A250408 Palindromic in bases 10 and 20.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 252, 6556, 6776, 7117, 10101, 12621, 20202, 22722, 30303, 1784871, 1786871, 1788871, 1913191, 1915191, 1917191, 1919191, 1444884441, 334495594433, 334843348433, 355110011553, 355746647553, 10614366341601, 14102600620141, 28095922959082, 38072044027083
Offset: 1
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..85
Crossrefs
Programs
-
Magma
[n: n in [0..10000000] | Intseq(n, 10) eq Reverse(Intseq(n, 10))and Intseq(n, 20) eq Reverse(Intseq(n, 20))]; // Vincenzo Librandi, Nov 23 2014
-
Mathematica
palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; genPal[n_] := Block[{id = IntegerDigits@ n, insert = {{}, {0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}}}, FromDigits@ Join[id, #, Reverse@ id] & /@ insert]; k = 1; lst = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; While[k < 1000001, s = Select[ genPal[k], palQ[#, 20] &]; If[s != {}, AppendTo[lst, s]; Print@ s; lst = Sort@ Flatten@ lst]; k++]; lst b1=10; b2=20; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* Vincenzo Librandi, Nov 23 2014 *)
-
Python
from gmpy2 import digits def palQ(n, b): # check if n is a palindrome in base b s = digits(n, b) return s == s[::-1] def palQgen10(l): # unordered generator of palindromes of length <= 2*l if l > 0: yield 0 for x in range(1,10**l): s = str(x) yield int(s+s[-2::-1]) yield int(s+s[::-1]) A250408_list = sorted([n for n in palQgen10(6) if palQ(n,20)]) # Chai Wah Wu, Nov 25 2014