A250410 Numbers palindromic in bases 10 and 25.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 494, 626, 676, 1001, 6886, 7887, 8338, 9339, 622226, 626626, 2828282, 2859582, 3304033, 3309033, 3330333, 3335333, 3361633, 3366633, 3392933, 3397933, 6603066, 6608066, 6634366, 6639366, 8986898, 9400049, 9405049, 9431349, 9436349, 9462649, 9467649, 9493949, 9498949
Offset: 1
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..94 (first 82 terms from Chai Wah Wu)
Crossrefs
Programs
-
Magma
[n: n in [0..10000000] | Intseq(n) eq Reverse(Intseq(n))and Intseq(n, 25) eq Reverse(Intseq(n, 25))]; // Vincenzo Librandi, Nov 23 2014
-
Mathematica
palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; genPal[n_] := Block[{id = IntegerDigits@ n, insert = {{}, {0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}}}, FromDigits@ Join[id, #, Reverse@ id] & /@ insert]; k = 1; lst = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; While[k < 1000001, s = Select[ genPal[k], palQ[#, 25] &]; If[s != {}, AppendTo[lst, s]; Print@ s; lst = Sort@ Flatten@ lst]; k++]; lst
-
Python
from gmpy2 import digits def palQ(n,b): # check if n is a palindrome in base b s = digits(n,b) return s == s[::-1] def palQgen10(l): # unordered generator of palindromes of length <= 2*l if l > 0: yield 0 for x in range(1,10**l): s = str(x) yield int(s+s[-2::-1]) yield int(s+s[::-1]) A250410_list = sorted([n for n in palQgen10(6) if palQ(n,25)]) # Chai Wah Wu, Nov 25 2014