A250411 Palindromic in bases 10 and 27.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 252, 616, 757, 838, 919, 10301, 13031, 15951, 17871, 65856, 1197911, 2287822, 4385834, 5475745, 5549455, 6278726, 6639366, 7368637, 7573757, 8663668, 8737378, 9392939, 9466649, 9827289, 67166176, 214171412, 609808906, 836040638, 2132882312, 2487997842
Offset: 1
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..84
Crossrefs
Programs
-
Magma
[n: n in [0..10000000] | Intseq(n, 10) eq Reverse(Intseq(n, 10))and Intseq(n, 27) eq Reverse(Intseq(n, 27))]; // Vincenzo Librandi, Nov 23 2014
-
Mathematica
palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; genPal[n_] := Block[{id = IntegerDigits@ n, insert = {{}, {0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}}}, FromDigits@ Join[id, #, Reverse@ id] & /@ insert]; k = 1; lst = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; While[k < 1000001, s = Select[ genPal[k], palQ[#, 27] &]; If[s != {}, AppendTo[lst, s]; Print@ s; lst = Sort@ Flatten@ lst]; k++]; lst b1=10; b2=36; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* Vincenzo Librandi, Nov 23 2014 *)