cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A250413 Number of length n+1 0..2 arrays with the sum of the minimum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

5, 17, 38, 125, 335, 1061, 3069, 9495, 28221, 86149, 258252, 782393, 2350442, 7090347, 21303611, 64109181, 192553620, 578665211, 1737374865, 5217197093, 15659477401, 47004010481, 141055441813, 423295193635, 1270118805510
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2014

Keywords

Examples

			Some solutions for n=6:
..2....0....1....2....2....2....2....2....0....2....2....0....1....0....2....1
..2....0....2....0....1....1....0....1....1....2....0....0....1....0....0....2
..1....0....1....2....0....0....1....1....2....1....1....1....0....1....2....1
..2....2....1....2....2....0....0....0....2....2....1....1....1....1....1....2
..1....0....2....2....2....0....0....0....0....2....0....1....2....2....0....0
..2....2....2....1....1....1....2....0....1....0....1....0....1....2....1....2
..0....0....2....1....0....1....0....1....2....0....1....0....2....2....1....1
		

Crossrefs

Column 2 of A250419.

Formula

Empirical: a(n) = 6*a(n-1) - 3*a(n-2) - 40*a(n-3) + 59*a(n-4) + 68*a(n-5) - 146*a(n-6) - 14*a(n-7) + 91*a(n-8) - 8*a(n-9) - 12*a(n-10).
Empirical g.f.: x*(5 - 13*x - 49*x^2 + 148*x^3 + 84*x^4 - 397*x^5 + 40*x^6 + 257*x^7 - 36*x^8 - 36*x^9) / ((1 - x)*(1 - 2*x)*(1 + 2*x)*(1 - 3*x)*(1 - 2*x - x^2 + x^3)*(1 - 3*x^2 - x^3)). - Colin Barker, Nov 14 2018

A250414 Number of length n+1 0..3 arrays with the sum of the minimum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

7, 36, 99, 476, 1693, 7504, 29221, 123242, 492076, 2021436, 8111306, 32877666, 131905733, 531080990, 2128576994, 8541648896, 34206851593, 137042168870, 548526597108, 2195788650322, 8786230110165, 35158099104398, 140658315422311
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2014

Keywords

Comments

Column 3 of A250419

Examples

			Some solutions for n=6
..2....2....1....3....2....3....2....3....0....1....3....0....1....2....0....1
..1....0....3....2....1....0....3....2....1....1....2....0....2....2....2....1
..3....2....3....0....1....1....1....3....3....3....0....1....3....0....1....1
..1....0....0....0....3....0....3....3....1....1....0....3....2....1....2....2
..0....2....2....0....2....0....0....3....1....1....3....1....1....2....2....0
..1....0....1....2....3....0....3....2....2....0....1....0....2....1....3....1
..2....3....1....2....1....1....0....0....2....0....3....3....1....0....2....2
		

Formula

Empirical: a(n) = 12*a(n-1) -23*a(n-2) -252*a(n-3) +1056*a(n-4) +1766*a(n-5) -14214*a(n-6) -1040*a(n-7) +103693*a(n-8) -58064*a(n-9) -484016*a(n-10) +411280*a(n-11) +1566651*a(n-12) -1472256*a(n-13) -3670072*a(n-14) +3223960*a(n-15) +6306524*a(n-16) -4463544*a(n-17) -7823016*a(n-18) +3799616*a(n-19) +6723120*a(n-20) -1817056*a(n-21) -3791856*a(n-22) +352032*a(n-23) +1315312*a(n-24) +57408*a(n-25) -252160*a(n-26) -37120*a(n-27) +20352*a(n-28) +4608*a(n-29)

A250415 Number of length n+1 0..4 arrays with the sum of the minimum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

9, 65, 205, 1351, 5982, 34415, 169352, 904695, 4547008, 23448029, 117953499, 598260521, 3002881031, 15113176921, 75724031785, 379750748041, 1900758538693, 9516621521809, 47607635835257, 238183334181909, 1191212059701364
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2014

Keywords

Comments

Column 4 of A250419

Examples

			Some solutions for n=6
..0....1....1....2....1....4....0....4....3....3....4....3....0....0....1....3
..4....2....2....2....1....3....1....0....2....0....4....0....4....1....1....2
..4....4....2....1....3....3....2....4....2....0....4....2....0....2....3....1
..2....0....1....2....1....1....3....4....3....1....1....1....2....3....1....0
..3....0....0....2....4....4....3....4....2....4....2....4....0....1....1....0
..3....4....0....2....1....4....2....0....3....4....1....3....4....1....3....3
..1....3....1....4....1....0....4....3....2....3....3....4....0....3....1....3
		

A250416 Number of length n+1 0..5 arrays with the sum of the minimum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

11, 106, 370, 3154, 16790, 119364, 713260, 4620694, 28033122, 174036890, 1052524169, 6409923762, 38618278972, 233193985046, 1401840843777, 8433815453844, 50645668891739, 304220519953548, 1825994803261130
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2014

Keywords

Comments

Column 5 of A250419

Examples

			Some solutions for n=6
..3....5....3....1....5....4....5....2....2....3....1....2....5....2....4....5
..0....1....0....5....1....1....2....1....4....0....3....3....3....2....0....2
..5....3....4....1....0....2....3....4....1....1....3....3....2....4....4....3
..3....1....5....4....4....0....3....1....5....0....0....5....3....2....0....5
..5....3....4....3....5....5....3....1....1....2....2....2....4....3....3....0
..0....5....3....5....3....2....3....0....4....0....1....0....2....3....3....3
..0....1....3....3....2....2....4....0....5....4....1....3....3....1....4....1
		

A250417 Number of length n+1 0..6 arrays with the sum of the minimum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

13, 161, 606, 6433, 39916, 341011, 2399000, 18334295, 130350889, 947356115, 6693133584, 47588393713, 334543874696, 2356688545513, 16526137384381, 115977271626785, 812415242570854, 5692700008978435, 39860063264311589
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2014

Keywords

Comments

Column 6 of A250419

Examples

			Some solutions for n=5
..1....3....5....5....2....5....1....0....5....1....5....4....5....4....4....4
..2....1....6....5....6....4....1....4....5....5....6....6....5....3....4....1
..5....5....2....1....3....6....6....1....5....1....1....6....1....5....3....3
..6....0....5....6....0....2....6....2....2....0....4....1....3....0....6....3
..1....2....2....5....4....1....5....5....1....2....4....2....4....6....3....6
..4....0....1....2....1....5....1....4....1....5....1....5....5....6....1....0
		

A250418 Number of length n+1 0..7 arrays with the sum of the minimum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

15, 232, 927, 11906, 84094, 845358, 6847916, 60473968, 493271080, 4110606460, 33227112639, 270174922792, 2170847791630, 17476736034672, 140045328565480, 1123079823815258, 8990031255733660, 71987420633900826, 576024775450468215
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2014

Keywords

Comments

Column 7 of A250419

Examples

			Some solutions for n=5
..0....2....7....2....7....2....7....7....2....3....0....2....2....6....0....2
..7....4....2....1....0....5....0....6....6....6....5....0....5....5....4....2
..3....6....4....7....0....4....5....6....2....2....3....0....5....2....0....6
..6....6....2....1....4....1....1....1....6....2....5....6....3....6....3....0
..0....2....4....4....0....3....5....2....5....3....4....0....0....7....1....0
..1....4....0....5....7....2....0....6....3....4....7....3....1....7....2....6
		

A250420 Number of length 3+1 0..n arrays with the sum of the minimum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

10, 38, 99, 205, 370, 606, 927, 1345, 1874, 2526, 3315, 4253, 5354, 6630, 8095, 9761, 11642, 13750, 16099, 18701, 21570, 24718, 28159, 31905, 35970, 40366, 45107, 50205, 55674, 61526, 67775, 74433, 81514, 89030, 96995, 105421, 114322, 123710, 133599
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2014

Keywords

Examples

			Some solutions for n=6:
..0....4....3....5....0....2....4....0....5....0....4....1....2....4....5....1
..2....2....1....2....5....4....2....0....0....4....4....1....2....6....4....0
..0....2....1....4....2....4....5....1....3....1....4....2....5....2....6....3
..5....0....0....4....4....2....4....0....0....4....0....3....0....6....0....0
		

Crossrefs

Row 3 of A250419.

Formula

Empirical: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5).
Empirical for n mod 2 = 0: a(n) = (13/6)*n^3 + (13/4)*n^2 + (10/3)*n + 1.
Empirical for n mod 2 = 1: a(n) = (13/6)*n^3 + (13/4)*n^2 + (10/3)*n + (5/4).
Empirical g.f.: x*(10 + 8*x + 5*x^2 + 4*x^3 - x^4) / ((1 - x)^4*(1 + x)). - Colin Barker, Nov 14 2018

A250421 Number of length 4+1 0..n arrays with the sum of the minimum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

20, 125, 476, 1351, 3154, 6433, 11906, 20461, 33178, 51359, 76520, 110417, 155080, 212797, 286144, 378023, 491638, 630529, 798614, 1000157, 1239806, 1522639, 1854124, 2240161, 2687132, 3201853, 3791620, 4464263, 5228090, 6091937, 7065226
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2014

Keywords

Examples

			Some solutions for n=6:
..6....6....6....6....6....4....1....1....3....1....5....6....3....3....2....2
..3....1....1....4....3....5....0....6....0....1....6....3....0....6....2....0
..5....0....1....6....4....1....6....0....5....2....4....6....6....1....4....6
..3....1....4....4....0....4....4....6....0....1....6....1....5....1....3....1
..6....4....3....5....6....2....4....1....0....1....5....3....6....5....6....3
		

Crossrefs

Row 4 of A250419.

Formula

Empirical: a(n) = 4*a(n-1) - 6*a(n-2) + 6*a(n-3) - 9*a(n-4) + 12*a(n-5) - 9*a(n-6) + 6*a(n-7) - 6*a(n-8) + 4*a(n-9) - a(n-10).
Empirical for n mod 3 = 0: a(n) = (2/15)*n^5 + (92/27)*n^4 + (85/27)*n^3 + (68/9)*n^2 + (68/15)*n + 1.
Empirical for n mod 3 = 1: a(n) = (2/15)*n^5 + (92/27)*n^4 + (85/27)*n^3 + (68/9)*n^2 + (632/135)*n + (29/27).
Empirical for n mod 3 = 2: a(n) = (2/15)*n^5 + (92/27)*n^4 + (85/27)*n^3 + (68/9)*n^2 + (652/135)*n + (31/27).
Empirical g.f.: x*(20 + 45*x + 96*x^2 + 77*x^3 + 36*x^4 - 48*x^5 - 44*x^6 - 37*x^7 - x^9) / ((1 - x)^6*(1 + x + x^2)^2). - Colin Barker, Nov 14 2018

A250422 Number of length 5+1 0..n arrays with the sum of the minimum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

36, 335, 1693, 5982, 16790, 39916, 84094, 161350, 287910, 484353, 776742, 1196504, 1781894, 2577507, 3636138, 5017850, 6792317, 9037401, 11842016, 15304097, 19534144, 24652517, 30793639, 38102572, 46740025, 56878092, 68706116, 82425513
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2014

Keywords

Comments

Row 5 of A250419

Examples

			Some solutions for n=6
..3....5....3....3....4....4....4....2....2....2....3....6....2....5....0....5
..5....1....0....4....2....2....6....1....4....0....2....2....2....4....2....4
..4....2....2....6....5....1....1....0....0....0....2....2....3....2....5....6
..1....0....2....1....3....1....6....2....0....5....3....6....0....4....0....1
..3....0....3....1....6....5....6....5....2....3....4....1....6....2....4....2
..1....3....0....3....2....3....0....1....5....6....1....6....4....3....2....4
		

Formula

Empirical: a(n) = a(n-1) +a(n-2) +a(n-3) -4*a(n-5) -a(n-6) -a(n-7) +4*a(n-8) +4*a(n-9) -a(n-10) -a(n-11) -4*a(n-12) +a(n-14) +a(n-15) +a(n-16) -a(n-17)
Empirical for n mod 12 = 0: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (689/288)*n^2 + (211/72)*n + 1
Empirical for n mod 12 = 1: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (3449/1152)*n^2 + (4903/3456)*n + (74825/20736)
Empirical for n mod 12 = 2: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (689/288)*n^2 + (395/144)*n + (1633/1296)
Empirical for n mod 12 = 3: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (3449/1152)*n^2 + (1765/1152)*n + (953/256)
Empirical for n mod 12 = 4: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (689/288)*n^2 + (649/216)*n + (92/81)
Empirical for n mod 12 = 5: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (3449/1152)*n^2 + (1549/1152)*n + (76105/20736)
Empirical for n mod 12 = 6: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (689/288)*n^2 + (395/144)*n + (17/16)
Empirical for n mod 12 = 7: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (3449/1152)*n^2 + (5551/3456)*n + (80009/20736)
Empirical for n mod 12 = 8: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (689/288)*n^2 + (211/72)*n + (97/81)
Empirical for n mod 12 = 9: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (3449/1152)*n^2 + (1549/1152)*n + (889/256)
Empirical for n mod 12 = 10: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (689/288)*n^2 + (1217/432)*n + (1553/1296)
Empirical for n mod 12 = 11: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (3449/1152)*n^2 + (1765/1152)*n + (81289/20736)

A250423 Number of length 6+1 0..n arrays with the sum of the minimum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

72, 1061, 7504, 34415, 119364, 341011, 845358, 1878315, 3826222, 7263401, 13006830, 22184249, 36304264, 57333585, 87793296, 130863267, 190475904, 271446215, 379605094, 521929211, 706693318, 943642869, 1244141718, 1621385877
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2014

Keywords

Comments

Row 6 of A250419

Examples

			Some solutions for n=5
..3....1....5....5....2....1....3....1....0....3....1....4....5....1....1....0
..2....0....3....0....3....0....1....0....2....3....4....0....2....0....5....2
..1....4....0....5....0....2....5....2....4....2....3....5....4....1....1....0
..0....1....3....1....2....0....3....4....4....1....2....1....4....2....3....2
..0....2....4....3....3....2....3....2....5....5....4....4....3....1....3....2
..1....5....1....2....1....0....5....2....1....4....3....1....3....0....0....5
..3....2....3....0....5....2....5....5....5....1....4....4....0....4....3....0
		
Showing 1-10 of 11 results. Next