cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250422 Number of length 5+1 0..n arrays with the sum of the minimum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

36, 335, 1693, 5982, 16790, 39916, 84094, 161350, 287910, 484353, 776742, 1196504, 1781894, 2577507, 3636138, 5017850, 6792317, 9037401, 11842016, 15304097, 19534144, 24652517, 30793639, 38102572, 46740025, 56878092, 68706116, 82425513
Offset: 1

Views

Author

R. H. Hardin, Nov 22 2014

Keywords

Comments

Row 5 of A250419

Examples

			Some solutions for n=6
..3....5....3....3....4....4....4....2....2....2....3....6....2....5....0....5
..5....1....0....4....2....2....6....1....4....0....2....2....2....4....2....4
..4....2....2....6....5....1....1....0....0....0....2....2....3....2....5....6
..1....0....2....1....3....1....6....2....0....5....3....6....0....4....0....1
..3....0....3....1....6....5....6....5....2....3....4....1....6....2....4....2
..1....3....0....3....2....3....0....1....5....6....1....6....4....3....2....4
		

Formula

Empirical: a(n) = a(n-1) +a(n-2) +a(n-3) -4*a(n-5) -a(n-6) -a(n-7) +4*a(n-8) +4*a(n-9) -a(n-10) -a(n-11) -4*a(n-12) +a(n-14) +a(n-15) +a(n-16) -a(n-17)
Empirical for n mod 12 = 0: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (689/288)*n^2 + (211/72)*n + 1
Empirical for n mod 12 = 1: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (3449/1152)*n^2 + (4903/3456)*n + (74825/20736)
Empirical for n mod 12 = 2: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (689/288)*n^2 + (395/144)*n + (1633/1296)
Empirical for n mod 12 = 3: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (3449/1152)*n^2 + (1765/1152)*n + (953/256)
Empirical for n mod 12 = 4: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (689/288)*n^2 + (649/216)*n + (92/81)
Empirical for n mod 12 = 5: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (3449/1152)*n^2 + (1549/1152)*n + (76105/20736)
Empirical for n mod 12 = 6: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (689/288)*n^2 + (395/144)*n + (17/16)
Empirical for n mod 12 = 7: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (3449/1152)*n^2 + (5551/3456)*n + (80009/20736)
Empirical for n mod 12 = 8: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (689/288)*n^2 + (211/72)*n + (97/81)
Empirical for n mod 12 = 9: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (3449/1152)*n^2 + (1549/1152)*n + (889/256)
Empirical for n mod 12 = 10: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (689/288)*n^2 + (1217/432)*n + (1553/1296)
Empirical for n mod 12 = 11: a(n) = (16771/3456)*n^5 - (18673/6912)*n^4 + (133891/5184)*n^3 + (3449/1152)*n^2 + (1765/1152)*n + (81289/20736)