A250551 Denominator of the harmonic mean of the first n positive 10-gonal numbers.
1, 11, 307, 8117, 139393, 982381, 4935773, 287319059, 1056494083, 39179109811, 1609331378051, 4835480422963, 33892787092141, 1798339013862173, 34201770221163407, 4176177999344899729, 4179324192635626369, 32062945622467289429, 2341997846273161559117
Offset: 1
Examples
a(3) = 307 because the first 3 positive decagonal numbers A001107 are [1,10,27], and 3/(1/1+1/10+1/27) = 810/307.
Links
- Colin Barker, Table of n, a(n) for n = 1..850
Programs
-
Mathematica
With[{s = Array[PolygonalNumber[10, #] &, 19]}, Denominator@ Array[HarmonicMean@ Take[s, #] &, Length@ s]] (* Michael De Vlieger, Nov 02 2017 *)
-
PARI
harmonicmean(v) = #v / sum(k=1, #v, 1/v[k]) s=vector(30); for(n=1, #s, s[n]=denominator(harmonicmean(vector(n, k, (8*k^2-6*k)/2)))); s
Formula
a(n) = denominator(r(n)) with the rationals r(n) = n/Sum_{k=1..n} A001107(n), n >= 1. See the name. - Wolfdieter Lang, Nov 02 2017
Comments