cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250646 T(n,k)=Number of length n+1 0..k arrays with the sum of the maximum of each adjacent pair multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

1, 1, 6, 1, 17, 6, 1, 36, 23, 20, 1, 65, 44, 125, 28, 1, 106, 89, 476, 280, 72, 1, 161, 134, 1293, 1424, 1061, 120, 1, 232, 219, 2954, 4853, 7696, 2870, 272, 1, 321, 296, 5901, 12473, 34441, 28238, 9495, 496, 1, 430, 433, 10766, 28379, 120114, 163043, 126482
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2014

Keywords

Comments

Table starts
......1.........1............1.............1...............1...............1
......6........17...........36............65.............106.............161
......6........23...........44............89.............134.............219
.....20.......125..........476..........1293............2954............5901
.....28.......280.........1424..........4853...........12473...........28379
.....72......1061.........7696.........34441..........120114..........332827
....120......2870........28238........163043..........677505.........2225195
....272......9495.......126482........915663.........4749950........18399217
....496.....27507.......491943.......4537317........28200435.......129137886
...1056.....86149......2059700......23671551.......177863786.......953809557
...2016....255704......8161068.....118358549......1063874048......6704767056
...4160....782393.....33268124.....601565301......6491819162.....47777146765
...8128...2341381....132637221....3011330309.....38892883673....335147823244
..16512...7090347....534771362...15155615651....234724691398...2360792885729
..32640..21271463...2136620867...75845220727...1407192408230..16540740396740
..65792..64109181...8574987528..380253505733...8460554956974.116054610957529
.130816.192439733..34285733053.1902264449049..50741165814612.812699929957712
.262656.578665211.137334914170.9522274036139.304671802762820

Examples

			Some solutions for n=5 k=4
..4....2....1....4....0....1....1....2....0....2....1....2....2....4....4....3
..1....1....1....1....2....2....0....2....0....1....0....1....2....0....1....3
..1....0....1....1....2....0....0....1....1....0....2....0....2....2....0....1
..0....1....0....0....0....0....1....1....2....4....3....4....1....3....2....2
..1....1....1....3....1....4....3....0....1....3....3....3....1....0....1....4
..3....0....4....3....3....3....3....0....0....2....0....3....3....2....0....4
		

Crossrefs

Column 1 is A113979(n+2)
Row 2 is A084990(n+1)

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) +2*a(n-2) -4*a(n-3)
k=2: [order 10]
k=3: [order 24] for n>25
Empirical for row n:
n=1: a(n) = a(n-1)
n=2: a(n) = (1/3)*n^3 + 2*n^2 + (8/3)*n + 1
n=3: a(n) = a(n-1) +3*a(n-2) -3*a(n-3) -3*a(n-4) +3*a(n-5) +a(n-6) -a(n-7); also a polynomial of degree 3 plus a quasipolynomial of degree 2 with period 2
n=4: [order 14; also a polynomial of degree 5 plus a quasipolynomial of degree 2 with period 6]
n=5: [order 25; also a polynomial of degree 5 plus a quasipolynomial of degree 4 with period 12]