A250663 Number of tilings of a 12 X n rectangle using 2n hexominoes of shape I.
1, 1, 1, 1, 1, 1, 9, 19, 31, 45, 61, 79, 196, 419, 786, 1341, 2134, 3221, 5789, 10995, 20621, 37149, 63931, 105379, 180201, 319826, 578034, 1040971, 1840549, 3171726, 5465324, 9529019, 16830425, 29914626, 53016504, 92934619, 161999425, 282619059, 495436514
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Hexomino
Programs
-
Maple
gf:= -(x^15-x^12-2*x^10-2*x^9+x^7+2*x^6+x^5+x^4+x^3-1) *(x-1)^5 *(x+1)^5 *(x^2+x+1)^5 *(x^2-x+1)^5 / (x^51 -x^48 -3*x^46 -8*x^45 +2*x^43 +8*x^42 +3*x^41 +18*x^40 +28*x^39 -x^38 -11*x^37 -29*x^36 -15*x^35 -45*x^34 -56*x^33 +5*x^32 +24*x^31 +61*x^30 +30*x^29 +60*x^28 +70*x^27 -10*x^26 -25*x^25 -80*x^24 -30*x^23 -45*x^22 -61*x^21 +10*x^20 +10*x^19 +71*x^18 +15*x^17 +28*x^16 +38*x^15 -5*x^14 -2*x^13 -43*x^12 -8*x^11 -8*x^10 -13*x^9 +x^8 -4*x^7 +14*x^6 +x^3 +x -1): a:= n-> coeff(series(gf, x, n+1), x, n): seq(a(n), n=0..40);
Formula
G.f.: See Maple program.