A250664 Number of tilings of a 14 X n rectangle using 2n heptominoes of shape I.
1, 1, 1, 1, 1, 1, 1, 10, 21, 34, 49, 66, 85, 106, 256, 535, 985, 1654, 2596, 3871, 5545, 9391, 16956, 30589, 53481, 89851, 145152, 226297, 364656, 610062, 1045297, 1799392, 3065145, 5121255, 8359876, 13624960, 22431292, 37434945, 63098713, 106641142, 179356873
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Wikipedia, Heptomino
Programs
-
Maple
gf:= -(x^21 +x^18 -2*x^15 -3*x^14 -2*x^12 -2*x^11 +x^9 +2*x^8 +3*x^7 +x^6 +x^5 +x^4-1) *(x-1)^6 *(x^6+x^5+x^4+x^3+x^2+x+1)^6 / (x^70 +x^67 -3*x^64 -10*x^63 -3*x^61 -9*x^60 +3*x^58 +23*x^57 +45*x^56 +3*x^55 +21*x^54 +36*x^53 -x^52 -19*x^51 -76*x^50 -121*x^49 -18*x^48 -63*x^47 -84*x^46 +6*x^45 +51*x^44 +140*x^43 +216*x^42 +45*x^41 +105*x^40 +126*x^39 -15*x^38 -75*x^37 -154*x^36 -267*x^35 -60*x^34 -105*x^33 -126*x^32 +20*x^31 +65*x^30 +98*x^29 +236*x^28 +45*x^27 +63*x^26 +90*x^25 -15*x^24 -33*x^23 -40*x^22 -153*x^21 -18*x^20 -33*x^19 -48*x^18 +6*x^17 +15*x^16 +8*x^15 +69*x^14 +9*x^13 +9*x^12 +15*x^11 -x^10 -x^9 +5*x^8 -17*x^7 -x^4 -x +1): a:= n-> coeff(series(gf, x, n+1), x, n): seq(a(n), n=0..50);
Formula
G.f.: See Maple program.