cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250666 Number of tilings of a 18 X n rectangle using 2n nonominoes of shape I.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 25, 40, 57, 76, 97, 120, 145, 172, 400, 809, 1449, 2376, 3652, 5345, 7529, 10284, 13696, 21232, 35417, 60028, 100004, 161664, 252945, 383660, 565776, 813712, 1201856, 1838369, 2895233, 4629793, 7412665, 11761912, 18384420
Offset: 0

Views

Author

Alois P. Heinz, Nov 26 2014

Keywords

Crossrefs

Column k=9 of A250662.
Cf. A251078.

Programs

  • Maple
    gf:= -(x^36 +x^32 -3*x^28 -4*x^27 -3*x^24 -3*x^23 +3*x^20 +6*x^19 +6*x^18 +3*x^16 +4*x^15 +3*x^14 -x^12 -2*x^11 -3*x^10 -4*x^9 -x^8 -x^7 -x^6 -x^5 +1) *(x-1)^8 *(x^2+x +1)^8 *(x^6+x^3+1)^8 / (x^117 +x^113 -4*x^109 -13*x^108 -4*x^105 -12*x^104 +6*x^101 +43*x^100 +78*x^99 +6*x^97 +40*x^96 +66*x^95 -4*x^93 -55*x^92 -209*x^91 -286*x^90 -4*x^89 -52*x^88 -180*x^87 -220*x^86 +x^85 +33*x^84 +225*x^83 +605*x^82 +716*x^81
    +32*x^80 +200*x^79 +480*x^78 +495*x^77 -8*x^76 -120*x^75 -540*x^74 -1155*x^73 -1295*x^72 -112*x^71 -448*x^70 -840*x^69 -792*x^68 +28*x^67 +252*x^66 +840*x^65 +1518*x^64 +1744*x^63 +224*x^62 +644*x^61 +1008*x^60 +924*x^59 -56*x^58 -336*x^57 -882*x^56 -1386*x^55 -1772*x^54 -280*x^53 -616*x^52 -840*x^51 -792*x^50 +70*x^49 +294*x^48 +630*x^47 +858*x^46
    +1365*x^45 +224*x^44 +392*x^43 +480*x^42 +503*x^41 -56*x^40 -168*x^39 -300*x^38 -354*x^37 -803*x^36 -112*x^35 -160*x^34 -204*x^33 -244*x^32 +28*x^31 +60*x^30 +114*x^29 +103*x^28 +362*x^27 +32*x^26 +62*x^25 +72*x^24 +90*x^23 -8*x^22 -20*x^21 -31*x^20 -13*x^19 -118*x^18 -12*x^17 -12*x^16 -12*x^15 -20*x^14 +x^13 +x^12 +x^11 -7*x^10 +22*x^9 +x^5 +x -1):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=0..60);

Formula

G.f.: See Maple program.