A250691 T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction.
104, 543, 520, 2541, 2920, 2512, 11150, 13906, 15246, 11736, 47002, 60508, 74631, 76320, 53032, 193117, 249512, 324648, 383440, 362241, 233300, 780551, 995624, 1315446, 1670016, 1848953, 1647460, 1005121, 3122604, 3894542, 5098590, 6671458
Offset: 1
Examples
Some solutions for n=3 k=4 ..2..3..1..0..0....2..2..3..2..2....2..2..1..1..0....0..1..0..0..0 ..2..3..2..1..1....0..0..1..0..0....2..2..2..2..3....0..1..0..0..1 ..1..2..1..0..0....0..0..1..1..1....1..1..1..1..2....1..2..1..1..2 ..0..1..2..1..3....0..0..1..1..2....0..0..0..0..3....1..2..1..1..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..112
Formula
Empirical for column k:
k=1: [linear recurrence of order 7] for n>11
k=2: [order 13] for n>17
k=3: [same order 13] for n>17
k=4: [same order 13] for n>17
k=5: [same order 13] for n>17
k=6: [same order 13] for n>17
k=7: [same order 13] for n>17
Empirical for row n:
n=1: [linear recurrence of order 7, cf. A250692]
n=2: [order 10, cf. A250693]
n=3: [order 16, cf. A250694]
n=4: [same order 16, cf. A250695]
n=5: [same order 16, cf. A250696]
n=6: [same order 16, cf. A250697]
n=7: [same order 16, cf. A250698].
Comments