cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A255002 Coefficients of recurrence for rows and columns of A250544 and rows of A250691.

Original entry on oeis.org

-1, 30, -415, 3514, -20386, 85924, -272198, 661180, -1244717, 1822478, -2068955, 1802474, -1181760, 563888, -184752, 37152, -3456
Offset: 0

Views

Author

M. F. Hasler, Feb 11 2015

Keywords

Comments

The convention for signs and indices is such that A(n) = sum_{k=1..16} a(k)*A(n-k), where A is any row of A250691 (i.e., A250692 - A250698) or row or column of A250544 (i.e., A223069, A250538 - A250543).

Crossrefs

Programs

  • PARI
    Vecrev(-denominator(ggf(A250538=b2v(readvec("/tmp/b250538.txt"))))) \\ using the "guess generating function" and "b-file to vector" scripts found on the OEIS wiki

A250544 T(n,k) = number of (n+1)X(k+1) 0..3 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing x(i,j)-x(i-1,j) in the j direction.

Original entry on oeis.org

150, 1080, 1080, 6627, 10704, 6627, 36552, 79366, 79366, 36552, 187000, 491650, 644779, 491650, 187000, 905440, 2701872, 4169584, 4169584, 2701872, 905440, 4206453, 13657024, 23289547, 27240292, 23289547, 13657024, 4206453, 18933408
Offset: 1

Views

Author

R. H. Hardin, Nov 24 2014

Keywords

Comments

Peter Luschny remarks that the coefficients of the empirical recurrence relation for the column 1 are listed in the 9th row of A246117. - M. F. Hasler, Feb 11 2015

Examples

			Some solutions for n=2 k=4
..2..2..1..0..0....2..0..3..1..1....2..2..2..2..0....0..0..2..0..0
..2..3..2..2..2....0..0..3..2..2....2..2..2..2..0....1..1..3..1..1
..1..3..2..3..3....0..0..3..2..3....1..2..2..2..3....0..0..2..0..2
Table starts:
.......150.......1080........6627........36552........187000........905440
......1080......10704.......79366.......491650.......2701872......13657024
......6627......79366......644779......4169584......23289547.....117777788
.....36552.....491650.....4169584.....27240292.....151170400.....752602024
....187000....2701872....23289547....151170400.....824599694....4013192386
....905440...13657024...117777788....752602024....4013192386...19031828420
...4206453...64993652...555362165...3475227442...18064444143...83356429646
..18933408..295871112..2489782728..15210145612...76961701472..345394150196
..83153850.1302924116.10756619019..64036997144..315204675572.1375930596944
.358250280.5595784456.45218540866.262068107390.1254564769204.5328628464360
		

Crossrefs

Row/column 1 is A223069(n+1) and row/column 2 of A223071.
Row/column 2-7 are A250538 - A250543; diagonal is A250537.

Formula

Empirical for column k (k=2-7 recurrence also works for k=1):
k=1: a(n) = 16*a(n-1) -106*a(n-2) +376*a(n-3) -769*a(n-4) +904*a(n-5) -564*a(n-6) +144*a(n-7)
k=2: [order 16, see A250538]
k=3: [same order 16]
k=4: [same order 16]
k=5: [same order 16]
k=6: [same order 16]
k=7: [same order 16]

Extensions

Edited by M. F. Hasler, Feb 11 2015

A250692 Number of (1+1) X (n+1) 0..3 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction.

Original entry on oeis.org

104, 543, 2541, 11150, 47002, 193117, 780551, 3122604, 12415380, 49197371, 194657281, 769963978, 3046948238, 12068103705, 47849956731, 189941232872, 754813261576, 3002665654519, 11955693334901, 47642223194886
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2014

Keywords

Comments

Row 1 of A250691.

Examples

			Some solutions for n=4:
..2..1..1..0..3....2..0..0..0..0....2..3..3..3..2....1..1..2..0..1
..2..1..1..0..3....2..1..1..1..1....1..2..2..2..1....1..1..2..0..3
		

Crossrefs

Cf. A250691.

Formula

Empirical: a(n) = 16*a(n-1) - 106*a(n-2) + 376*a(n-3) - 769*a(n-4) + 904*a(n-5) - 564*a(n-6) + 144*a(n-7).
Empirical g.f.: x*(104 - 1121*x + 4877*x^2 - 11052*x^3 + 13756*x^4 - 8880*x^5 + 2304*x^6) / ((1 - x)^2*(1 - 2*x)^2*(1 - 3*x)^2*(1 - 4*x)). - Colin Barker, Feb 21 2018

A250698 Number of (7+1)X(n+1) 0..3 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction.

Original entry on oeis.org

1005121, 7249825, 37322413, 160222342, 617657415, 2224688673, 7662909389, 25622390948, 84040600357, 272488719033, 878393149045, 2826884204762, 9107833801683, 29426182298097, 95415082577317, 310574007541112
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2014

Keywords

Comments

Row 7 of A250691

Examples

			Some solutions for n=1
..2..2....2..1....0..0....0..1....0..1....2..0....0..0....0..0....2..0....2..0
..0..0....2..1....0..0....2..3....0..1....2..2....2..2....2..2....2..0....2..1
..0..0....2..2....1..2....1..2....0..1....2..2....3..3....2..2....2..0....2..2
..2..2....2..2....0..1....2..3....2..3....1..1....2..2....3..3....3..2....3..3
..1..1....1..1....0..1....0..1....0..1....1..1....0..0....2..2....1..0....1..1
..0..0....2..2....2..3....0..2....1..3....1..1....0..1....0..0....2..1....1..3
..2..3....2..3....1..2....0..2....0..2....1..1....0..1....1..1....2..1....0..2
..0..1....0..1....1..3....1..3....0..2....0..0....0..3....0..2....2..1....1..3
		

Formula

Empirical: a(n) = 30*a(n-1) -415*a(n-2) +3514*a(n-3) -20386*a(n-4) +85924*a(n-5) -272198*a(n-6) +661180*a(n-7) -1244717*a(n-8) +1822478*a(n-9) -2068955*a(n-10) +1802474*a(n-11) -1181760*a(n-12) +563888*a(n-13) -184752*a(n-14) +37152*a(n-15) -3456*a(n-16)

A250693 Number of (2+1)X(n+1) 0..3 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction.

Original entry on oeis.org

520, 2920, 13906, 60508, 249512, 995624, 3894542, 15061244, 57914756, 222291368, 853854042, 3287692860, 12701872800, 49262782920, 191821043814, 749801489244, 2941369935292, 11575782602248, 45685412767666, 180742482085084
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2014

Keywords

Comments

Row 2 of A250691

Examples

			Some solutions for n=4
..2..3..1..1..1....0..2..1..0..0....0..1..1..1..2....0..0..3..1..2
..1..2..0..0..0....0..2..2..2..2....0..1..1..1..3....0..0..3..1..2
..0..3..3..3..3....0..3..3..3..3....0..1..1..1..3....0..0..3..1..3
		

Formula

Empirical: a(n) = 20*a(n-1) -175*a(n-2) +882*a(n-3) -2835*a(n-4) +6072*a(n-5) -8777*a(n-6) +8458*a(n-7) -5204*a(n-8) +1848*a(n-9) -288*a(n-10)

A250694 Number of (3+1)X(n+1) 0..3 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction.

Original entry on oeis.org

2512, 15246, 74631, 324648, 1315446, 5098590, 19218493, 71223396, 261469392, 955896790, 3493273891, 12795574192, 47067986826, 174102348110, 648137931065, 2429513706796, 9171278516740, 34862473392934, 133406490904351
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2014

Keywords

Comments

Row 3 of A250691

Examples

			Some solutions for n=3
..2..1..3..1....3..0..1..0....2..3..1..0....1..1..1..0....0..1..1..2
..1..0..2..0....2..1..2..1....2..3..2..2....1..1..2..2....0..1..1..2
..2..1..3..2....2..2..3..3....0..1..0..0....1..1..2..2....0..1..1..2
..1..0..2..3....0..0..1..1....0..1..2..3....2..2..3..3....0..1..1..3
		

Formula

Empirical: a(n) = 30*a(n-1) -415*a(n-2) +3514*a(n-3) -20386*a(n-4) +85924*a(n-5) -272198*a(n-6) +661180*a(n-7) -1244717*a(n-8) +1822478*a(n-9) -2068955*a(n-10) +1802474*a(n-11) -1181760*a(n-12) +563888*a(n-13) -184752*a(n-14) +37152*a(n-15) -3456*a(n-16)

A250695 Number of (4+1)X(n+1) 0..3 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction.

Original entry on oeis.org

11736, 76320, 383440, 1670016, 6671458, 25235016, 92169818, 329292956, 1160994284, 4064711976, 14193722396, 49590850136, 173757950350, 611608432408, 2165540377158, 7721145553812, 27744881818344, 100541208763000
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2014

Keywords

Comments

Row 4 of A250691

Examples

			Some solutions for n=2
..2..1..0....2..2..2....2..0..0....1..0..0....3..2..1....2..2..0....1..1..0
..2..2..1....0..0..0....3..1..1....1..0..0....3..2..2....2..2..2....1..1..0
..1..3..3....1..1..1....2..0..0....2..2..2....3..3..3....3..3..3....3..3..3
..1..3..3....0..0..0....3..2..2....0..0..0....2..2..2....2..2..2....3..3..3
..1..3..3....2..2..2....1..0..0....0..0..1....2..3..3....2..2..3....3..3..3
		

Formula

Empirical: a(n) = 30*a(n-1) -415*a(n-2) +3514*a(n-3) -20386*a(n-4) +85924*a(n-5) -272198*a(n-6) +661180*a(n-7) -1244717*a(n-8) +1822478*a(n-9) -2068955*a(n-10) +1802474*a(n-11) -1181760*a(n-12) +563888*a(n-13) -184752*a(n-14) +37152*a(n-15) -3456*a(n-16)

A250696 Number of (5+1)X(n+1) 0..3 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction.

Original entry on oeis.org

53032, 362241, 1848953, 8038566, 31728758, 117793753, 420283865, 1461625340, 5002774320, 16967929009, 57302621481, 193328559946, 653111062242, 2212763076073, 7527314240137, 25733887423136, 88490379721660
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2014

Keywords

Comments

Row 5 of A250691

Examples

			Some solutions for n=1
..3..0....2..0....1..1....1..0....3..1....3..0....2..0....0..0....3..3....3..0
..3..3....2..0....3..3....2..2....3..1....3..0....1..1....2..3....1..1....3..0
..1..1....1..1....0..0....2..2....2..0....2..1....2..2....1..2....0..0....3..0
..2..3....0..0....3..3....1..1....2..0....1..0....3..3....0..1....1..2....3..2
..1..2....2..2....1..1....2..3....1..1....0..1....1..1....2..3....0..1....1..0
..0..3....0..0....2..3....2..3....1..2....0..3....1..3....0..1....1..2....1..2
		

Formula

Empirical: a(n) = 30*a(n-1) -415*a(n-2) +3514*a(n-3) -20386*a(n-4) +85924*a(n-5) -272198*a(n-6) +661180*a(n-7) -1244717*a(n-8) +1822478*a(n-9) -2068955*a(n-10) +1802474*a(n-11) -1181760*a(n-12) +563888*a(n-13) -184752*a(n-14) +37152*a(n-15) -3456*a(n-16)

A250697 Number of (6+1)X(n+1) 0..3 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction.

Original entry on oeis.org

233300, 1647460, 8474002, 36673634, 143136866, 523260542, 1832718604, 6241479780, 20880237460, 69123618848, 227638279630, 748479312062, 2463064051982, 8124116088970, 26881398786600, 89272256311120
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2014

Keywords

Comments

Row 6 of A250691

Examples

			Some solutions for n=1
..0..0....2..1....2..2....2..1....2..1....2..0....0..0....2..0....2..0....2..0
..0..0....1..0....1..1....1..0....1..0....3..1....3..3....1..1....3..2....3..3
..2..3....1..0....1..1....1..2....1..0....3..2....2..2....3..3....2..1....1..1
..2..3....2..2....3..3....2..3....2..1....1..0....0..0....1..1....1..0....2..2
..1..2....0..0....1..1....1..2....1..0....3..2....1..2....1..1....3..3....1..1
..1..2....1..2....2..3....1..2....0..1....1..0....1..2....1..1....0..0....1..1
..1..3....1..3....2..3....2..3....0..3....3..2....0..3....1..3....0..2....1..2
		

Formula

Empirical: a(n) = 30*a(n-1) -415*a(n-2) +3514*a(n-3) -20386*a(n-4) +85924*a(n-5) -272198*a(n-6) +661180*a(n-7) -1244717*a(n-8) +1822478*a(n-9) -2068955*a(n-10) +1802474*a(n-11) -1181760*a(n-12) +563888*a(n-13) -184752*a(n-14) +37152*a(n-15) -3456*a(n-16)

A250685 Number of (n+1)X(2+1) 0..3 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing absolute value of x(i,j)-x(i-1,j) in the j direction.

Original entry on oeis.org

543, 2920, 15246, 76320, 362241, 1647460, 7249825, 31113316, 131014715, 543845812, 2233368847, 9098214240, 36844025643, 148553970588, 597082293823, 2394504059784, 9587995012203, 38352450171812, 153311305422383
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2014

Keywords

Comments

Column 2 of A250691

Examples

			Some solutions for n=4
..1..1..1....2..2..0....3..2..2....3..2..1....2..2..0....2..1..0....3..0..1
..1..1..2....3..3..2....3..2..2....3..3..3....3..3..2....2..3..3....3..0..1
..2..2..3....2..2..3....3..2..2....3..3..3....1..1..0....2..3..3....3..0..2
..0..0..1....0..0..1....3..3..3....0..0..0....0..0..2....0..1..1....3..0..2
..0..1..3....0..0..1....3..3..3....2..2..3....0..0..2....1..3..3....2..1..3
		

Formula

Empirical: a(n) = 27*a(n-1) -331*a(n-2) +2439*a(n-3) -12049*a(n-4) +42129*a(n-5) -107225*a(n-6) +201069*a(n-7) -277706*a(n-8) +278928*a(n-9) -197984*a(n-10) +94032*a(n-11) -26784*a(n-12) +3456*a(n-13) for n>17
Showing 1-10 of 16 results. Next