cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250916 E.g.f.: exp(C(x)^2 - 1) where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers, A000108.

Original entry on oeis.org

1, 2, 14, 152, 2236, 41512, 930904, 24474368, 738241424, 25132379552, 953267419744, 39867845243008, 1822779782497216, 90453927667906688, 4842249786763758464, 278167945047964156928, 17069371221016503644416, 1114374972408995525243392, 77126208846034435924819456
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + 2*x + 14*x^2/2! + 152*x^3/3! + 2236*x^4/4! + 41512*x^5/5! +...
such that log(A(x)) = C(x)^2 - 1,
log(A(x)) = 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 + 1430*x^7 +...
where C(x) = 1 + x*C(x)^2 is the g.f. of A000108.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(C=1); for(i=0, n, C=1+x*C^2 +x*O(x^n)); n!*polcoeff(exp(C^2-1), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = n!*polcoeff(exp((1-2*x - sqrt(1-4*x + x^3*O(x^n)))/(2*x^2) - 1), n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

E.g.f.: exp( (1-2*x-2*x^2 - sqrt(1-4*x))/(2*x^2) ).
a(n) ~ 2^(2*n+5/2) * n^(n-1) / exp(n-3). - Vaclav Kotesovec, Aug 22 2017