cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251268 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with no 2X2 subblock having x11-x00 less than x10-x01.

Original entry on oeis.org

11, 26, 35, 57, 114, 108, 120, 313, 480, 337, 247, 772, 1667, 2058, 1049, 502, 1775, 4930, 9109, 8812, 3268, 1013, 3894, 13052, 32636, 49872, 37772, 10179, 2036, 8277, 31936, 100843, 217634, 273607, 161906, 31707, 4083, 17224, 73805, 279718, 790734
Offset: 1

Views

Author

R. H. Hardin, Dec 01 2014

Keywords

Comments

Table starts
.....11.......26........57........120.........247..........502.........1013
.....35......114.......313........772........1775.........3894.........8277
....108......480......1667.......4930.......13052........31936........73805
....337.....2058......9109......32636......100843.......279718.......715685
...1049.....8812.....49872.....217634......790734......2510004......7189937
...3268....37772....273607....1457326.....6247708.....22806904.....73607411
..10179...161906...1501739....9772880....49523566....208452452....760734085
..31707...694042...8244503...65582500...393172015...1910905110...7901650053
..98764..2975162..45265163..440223510..3123669457..17543333688..82288916360
.307641.12753740.248529844.2955392154.24825649060.161181383956.858174176431

Examples

			Some solutions for n=4 k=4
..0..0..0..0..0....0..1..1..1..1....0..0..0..0..1....0..0..1..0..1
..1..1..1..1..1....0..0..0..1..1....0..1..1..1..1....0..0..0..1..1
..1..1..1..1..1....1..1..1..1..1....0..0..0..0..0....0..1..1..1..1
..1..1..1..1..1....0..0..0..0..0....0..0..1..1..1....0..0..0..0..0
..0..0..0..0..1....0..0..1..1..1....0..1..0..1..1....0..0..1..1..1
		

Crossrefs

Column 1 is A052550(n+2)
Row 1 is A000295(n+3)

Formula

Empirical for column k:
k=1: a(n) = 3*a(n-1) +a(n-2) -2*a(n-3)
k=2: a(n) = 5*a(n-1) -2*a(n-2) -5*a(n-3) +2*a(n-4)
k=3: [order 10]
k=4: [order 16]
k=5: [order 36]
k=6: [order 62]
Empirical for row n:
n=1: a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3)
n=2: a(n) = 6*a(n-1) -14*a(n-2) +16*a(n-3) -9*a(n-4) +2*a(n-5)
n=3: [order 8]
n=4: [order 10]
n=5: [order 12]
n=6: [order 14]
n=7: [order 16]