A251411 Numbers k such that A098550(k) = k.
1, 2, 3, 4, 12, 50, 86
Offset: 1
References
- L. Edson Jeffery, Posting to Sequence Fans Mailing List, Nov 30 2014.
Links
- Hans Havermann, Loops and unresolved chains for map n -> A098550(n) trajectories
- David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, The Yellowstone Permutation, arXiv preprint arXiv:1501.01669, 2015 and J. Int. Seq. 18 (2015) 15.6.7.
Programs
-
Mathematica
max = 100; f[lst_] := Block[{k = 4}, While[GCD[lst[[-2]], k] == 1 || GCD[lst[[-1]], k] > 1 || MemberQ[lst, k], k++]; Append[lst, k]]; A098550 = Nest[f, {1, 2, 3}, max - 3]; Select[Transpose[{Range[max], A098550}], #[[1]] == #[[2]]&][[All, 1]] (* Jean-François Alcover, Sep 05 2018, after Robert G. Wilson v in A098550 *)
-
Python
from math import gcd A251411_list, l1, l2, s, b = [1,2,3], 3, 2, 4, {} for n in range(4,10**4): i = s while True: if not i in b and gcd(i,l1) == 1 and gcd(i,l2) > 1: l2, l1, b[i] = l1, i, 1 while s in b: b.pop(s) s += 1 if i == n: A251411_list.append(n) break i += 1 # Chai Wah Wu, Dec 03 2014
Comments