cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A252177 T(n,k)=Number of length n+2 0..k arrays with the sum of the maximum minus the minimum of adjacent triples multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

2, 3, 12, 4, 49, 12, 5, 132, 83, 40, 6, 285, 264, 369, 56, 7, 536, 687, 1872, 957, 144, 8, 917, 1428, 6361, 6820, 3217, 240, 9, 1464, 2729, 17092, 30315, 31420, 9295, 544, 10, 2217, 4680, 39109, 100894, 179225, 123826, 28977, 992, 11, 3220, 7661, 79672
Offset: 1

Views

Author

R. H. Hardin, Dec 15 2014

Keywords

Comments

Table starts
....2......3.......4.........5..........6..........7...........8............9
...12.....49.....132.......285........536........917........1464.........2217
...12.....83.....264.......687.......1428.......2729........4680.........7661
...40....369....1872......6361......17092......39109.......79672.......148673
...56....957....6820.....30315.....100894.....277101......654644......1397115
..144...3217...31420....179225.....753200....2485637.....6994984.....17238485
..240...9295..123826....907249....4652710...18231947....59838132....169267931
..544..28977..515268...4728833...29364176..135424961...513937352...1653595049
..992..86267.2058802..23847033..177955614..963247737..4190189694..15244143115
.2112.262541.8332796.120644221.1080135428.6838373877.34020988396.139530739057

Examples

			Some solutions for n=5 k=4
..0....0....2....1....1....1....1....3....3....2....2....2....1....3....0....4
..3....2....1....2....0....1....0....4....4....3....2....2....3....0....2....2
..3....3....4....3....2....2....1....1....4....3....3....4....2....2....3....3
..3....0....0....3....4....2....0....3....4....2....1....3....2....4....4....4
..0....1....3....0....1....3....1....1....1....4....0....2....2....3....2....0
..0....2....1....3....2....3....3....2....1....0....2....3....4....0....2....4
..3....2....2....1....3....1....1....0....2....1....4....2....1....0....1....0
		

Crossrefs

Column 1 is A251421

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) +2*a(n-2) -4*a(n-3)
k=2: [order 14]
k=3: [order 39] for n>40
Empirical for row n:
n=1: a(n) = n + 1
n=2: a(n) = (1/6)*n^4 + (7/3)*n^3 + (29/6)*n^2 + (11/3)*n + 1
n=3: a(n) = 3*a(n-1) -8*a(n-3) +6*a(n-4) +6*a(n-5) -8*a(n-6) +3*a(n-8) -a(n-9); also a polynomial of degree 5 plus a quasipolynomial of degree 2 with period 2
n=4: [linear recurrence of order 23; also a polynomial of degree 6 plus a quasipolynomial of degree 3 with period 12]
Showing 1-1 of 1 results.