cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A251421 Number of length n+2 0..1 arrays with the sum of the maximum minus twice the median plus the minimum of adjacent triples multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

2, 12, 12, 40, 56, 144, 240, 544, 992, 2112, 4032, 8320, 16256, 33024, 65280, 131584, 261632, 525312, 1047552, 2099200, 4192256, 8392704, 16773120, 33562624, 67100672, 134234112, 268419072, 536903680, 1073709056, 2147549184, 4294901760
Offset: 1

Views

Author

R. H. Hardin, Dec 02 2014

Keywords

Comments

Column 1 of A251428.

Examples

			Some solutions for n=10:
..1....0....1....1....0....0....0....1....1....0....1....1....1....0....1....0
..0....1....1....0....1....1....1....0....0....1....0....1....1....1....0....0
..0....1....1....0....1....0....0....0....1....0....0....1....1....0....0....1
..0....1....0....0....1....0....0....1....0....1....1....1....1....0....1....1
..1....1....1....1....1....0....1....0....0....0....0....0....0....1....0....0
..1....1....0....1....1....0....1....0....1....0....1....1....0....0....0....1
..0....1....0....0....0....0....0....1....0....1....0....0....1....0....0....0
..1....1....0....0....0....1....0....1....0....0....1....0....1....1....0....1
..1....1....0....1....0....0....0....0....1....1....0....0....0....1....0....1
..1....1....0....0....0....0....0....0....0....0....0....0....1....0....0....0
..0....1....1....0....0....0....1....1....1....1....1....0....1....1....1....1
..0....0....1....0....1....1....0....0....1....1....0....0....0....1....0....0
		

Crossrefs

Cf. A251428.

Formula

Empirical: a(n) = 2*a(n-1) +2*a(n-2) -4*a(n-3).
Conjectures from Colin Barker, Mar 20 2018: (Start)
G.f.: 2*x*(1 + 4*x - 8*x^2) / ((1 - 2*x)*(1 - 2*x^2)).
a(n) = 2*(2^(n/2) + 2^n) for n even.
a(n) = 2*(2^n - 2^((n-3)/2+1)) for n odd.
(End)

A251422 Number of length n+2 0..2 arrays with the sum of the maximum minus twice the median plus the minimum of adjacent triples multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

9, 41, 97, 341, 1003, 3129, 9439, 28717, 86695, 261789, 788373, 2372693, 7133179, 21434717, 64377579, 193296317, 580236633, 1741470477, 5226041293, 15681654949, 47052540983, 141173946441, 423556852705, 1270745764685, 3812398439683
Offset: 1

Views

Author

R. H. Hardin, Dec 02 2014

Keywords

Comments

Column 2 of A251428

Examples

			Some solutions for n=9
..1....2....1....1....2....0....0....0....1....2....1....1....2....0....2....0
..0....2....1....1....0....1....0....2....0....1....1....2....2....1....1....1
..0....0....2....0....2....0....2....0....0....1....1....2....0....0....1....2
..1....0....1....2....0....2....1....1....2....1....2....1....1....0....1....0
..2....0....1....1....1....0....2....2....0....2....1....1....1....2....1....1
..2....1....0....0....2....1....1....2....0....1....1....1....2....2....0....2
..2....1....2....1....1....1....2....2....0....2....2....2....1....0....1....0
..1....2....2....2....1....0....1....2....2....0....1....0....1....1....0....1
..1....1....2....0....0....0....1....1....1....2....0....0....1....2....1....1
..1....2....2....0....1....2....1....1....1....0....0....0....0....1....2....0
..2....1....2....2....2....2....2....0....1....2....0....2....1....2....2....2
		

Formula

Empirical: a(n) = 8*a(n-1) -21*a(n-2) +12*a(n-3) +36*a(n-4) -66*a(n-5) +25*a(n-6) +56*a(n-7) -58*a(n-8) -56*a(n-9) +63*a(n-10) +8*a(n-11) +54*a(n-12) -80*a(n-13) +24*a(n-14)

A251423 Number of length n+2 0..3 arrays with the sum of the maximum minus twice the median plus the minimum of adjacent triples multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

16, 116, 380, 1888, 7458, 31980, 127566, 520568, 2080650, 8370976, 33475854, 134136344, 536498498, 2147099168, 8588150878, 34357874584, 137430314336, 549746688148, 2198981195384, 8796047678504, 35184165954884, 140737260054372
Offset: 1

Views

Author

R. H. Hardin, Dec 02 2014

Keywords

Comments

Column 3 of A251428

Examples

			Some solutions for n=7
..2....0....2....2....2....1....0....3....1....1....2....1....0....0....1....0
..2....3....3....0....3....2....2....1....0....1....2....1....0....0....0....0
..2....0....3....2....1....0....2....1....1....3....3....3....0....1....2....0
..1....3....3....3....1....1....0....3....1....0....2....0....1....3....2....1
..0....2....2....3....0....2....3....2....1....2....3....3....3....2....1....3
..2....2....3....0....2....0....0....2....3....1....1....0....1....1....1....3
..1....2....2....1....1....1....2....2....0....0....0....3....2....1....1....2
..0....2....2....2....0....0....2....1....2....3....3....0....2....0....1....2
..1....2....3....0....3....1....3....0....1....2....3....2....1....2....1....2
		

Formula

Empirical: a(n) = 11*a(n-1) -40*a(n-2) +28*a(n-3) +156*a(n-4) -332*a(n-5) +89*a(n-6) -263*a(n-7) +2117*a(n-8) -2247*a(n-9) -4433*a(n-10) +9779*a(n-11) -1921*a(n-12) +1315*a(n-13) -27632*a(n-14) +27440*a(n-15) +35510*a(n-16) -66532*a(n-17) +23084*a(n-18) -38208*a(n-19) +116256*a(n-20) -72640*a(n-21) -64384*a(n-22) +115840*a(n-23) -109312*a(n-24) +125184*a(n-25) -120064*a(n-26) +72704*a(n-27) -25600*a(n-28) +4096*a(n-29)

A251424 Number of length n+2 0..4 arrays with the sum of the maximum minus twice the median plus the minimum of adjacent triples multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

29, 237, 1113, 6589, 34893, 183341, 938895, 4771117, 24063611, 120999825, 606973965, 3041165657, 15225030583, 76186376289, 381124730885, 1906242140613, 9533185117349, 47672275138133, 238381757180439, 1191974407973189
Offset: 1

Views

Author

R. H. Hardin, Dec 02 2014

Keywords

Comments

Column 4 of A251428

Examples

			Some solutions for n=6
..0....0....0....1....1....1....0....1....1....0....0....1....0....1....1....0
..4....0....0....1....4....1....4....1....0....0....4....3....3....4....1....1
..4....4....4....2....3....0....3....1....0....2....2....3....3....2....4....0
..1....4....0....2....2....0....0....4....3....1....1....2....2....3....3....1
..1....0....3....0....2....4....3....3....3....3....3....2....1....1....1....4
..2....3....0....4....2....3....2....3....0....0....4....4....1....2....0....3
..3....0....2....0....1....3....1....1....4....0....2....0....4....4....1....4
..2....0....1....3....1....0....3....0....4....2....0....0....0....2....3....0
		

A251425 Number of length n+2 0..5 arrays with the sum of the maximum minus twice the median plus the minimum of adjacent triples multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

42, 432, 2532, 18952, 122452, 791668, 4868362, 29782800, 179832500, 1084104408, 6515269116, 39138627524, 234937479552, 1410085029812, 8461645099972, 50774656443080, 304660870764438, 1828017536543716, 10968256803665504
Offset: 1

Views

Author

R. H. Hardin, Dec 02 2014

Keywords

Comments

Column 5 of A251428

Examples

			Some solutions for n=5
..3....2....3....3....0....2....4....4....3....3....5....1....4....4....2....3
..2....1....0....2....1....2....1....1....0....1....0....4....3....5....1....1
..3....1....0....3....4....3....1....0....1....0....4....5....1....2....3....0
..1....5....2....2....1....5....3....0....4....1....3....4....0....0....4....2
..0....4....4....2....1....3....2....0....0....4....2....1....3....1....1....5
..2....5....4....2....5....1....1....1....1....0....0....4....5....2....5....2
..0....1....1....5....5....2....2....2....0....1....2....5....4....3....3....4
		

A251429 Number of length 2+2 0..n arrays with the sum of the maximum minus twice the median plus the minimum of adjacent triples multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

12, 41, 116, 237, 432, 725, 1128, 1641, 2316, 3145, 4148, 5357, 6776, 8413, 10328, 12489, 14924, 17689, 20764, 24149, 27928, 32061, 36568, 41513, 46868, 52641, 58924, 65653, 72856, 80621, 88896, 97681, 107092, 117057, 127596, 138805, 150624, 163061
Offset: 1

Views

Author

R. H. Hardin, Dec 02 2014

Keywords

Examples

			Some solutions for n=10:
..1....1....5....1....6....1....1....0....5....4....8....2....7....8....0....6
..7....8...10....7....4....6....3....3....6....6....3....6....2....6....6....7
.10....3....7....3....3...10....5....1....3....7....9....5...10....6....2....1
..7....7....8....9....6....1....1....4....5....4....1....9....7....8....5....9
		

Crossrefs

Row 2 of A251428.

Formula

Empirical: a(n) = a(n-1) + 2*a(n-3) - a(n-4) - a(n-5) - a(n-6) - a(n-7) + 2*a(n-8) + a(n-10) - a(n-11).
Empirical for n mod 12 = 0: a(n) = (79/27)*n^3 + (29/18)*n^2 + (17/3)*n + 1
Empirical for n mod 12 = 1: a(n) = (79/27)*n^3 + (29/18)*n^2 + (17/3)*n + (97/54)
Empirical for n mod 12 = 2: a(n) = (79/27)*n^3 + (29/18)*n^2 + (43/9)*n + (43/27)
Empirical for n mod 12 = 3: a(n) = (79/27)*n^3 + (29/18)*n^2 + (17/3)*n + (11/2)
Empirical for n mod 12 = 4: a(n) = (79/27)*n^3 + (29/18)*n^2 + (17/3)*n + (35/27)
Empirical for n mod 12 = 5: a(n) = (79/27)*n^3 + (29/18)*n^2 + (43/9)*n + (113/54)
Empirical for n mod 12 = 6: a(n) = (79/27)*n^3 + (29/18)*n^2 + (17/3)*n + 1
Empirical for n mod 12 = 7: a(n) = (79/27)*n^3 + (29/18)*n^2 + (17/3)*n + (313/54)
Empirical for n mod 12 = 8: a(n) = (79/27)*n^3 + (29/18)*n^2 + (43/9)*n + (43/27)
Empirical for n mod 12 = 9: a(n) = (79/27)*n^3 + (29/18)*n^2 + (17/3)*n + (3/2)
Empirical for n mod 12 = 10: a(n) = (79/27)*n^3 + (29/18)*n^2 + (17/3)*n + (35/27)
Empirical for n mod 12 = 11: a(n) = (79/27)*n^3 + (29/18)*n^2 + (43/9)*n + (329/54)
Empirical g.f.: x*(12 + 29*x + 75*x^2 + 97*x^3 + 125*x^4 + 114*x^5 + 98*x^6 + 55*x^7 + 27*x^8 + x^9 - x^10) / ((1 - x)^4*(1 + x)*(1 + x^2)*(1 + x + x^2)^2). - Colin Barker, Nov 29 2018

A251430 Number of length 3+2 0..n arrays with the sum of the maximum minus twice the median plus the minimum of adjacent triples multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

12, 97, 380, 1113, 2532, 5097, 9120, 15449, 24344, 36877, 53400, 75541, 103332, 138857, 182012, 235645, 299348, 376229, 465720, 572073, 693956, 836041, 996988, 1182653, 1390604, 1627337, 1890212, 2187213, 2514672, 2880669, 3281476, 3727513
Offset: 1

Views

Author

R. H. Hardin, Dec 02 2014

Keywords

Comments

Row 3 of A251428

Examples

			Some solutions for n=10
.10....6....6....1...10....6...10....6....6....8....0....5....6....2....1....8
..4....8....7....0....6....2....6....4....5....4....8....9...10....6....5....6
..6....5....9....1....7....5....6....7....2....5....5....1....3....5....4....8
.10....9....7....9....0....4....4....9....3....2...10....2....9....9....2....4
..2....4...10....2....5....0...10....8....2....5....3....9....4....9....9....7
		

Formula

Empirical: a(n) = -2*a(n-1) -4*a(n-2) -5*a(n-3) -5*a(n-4) -2*a(n-5) +3*a(n-6) +10*a(n-7) +17*a(n-8) +21*a(n-9) +21*a(n-10) +14*a(n-11) +3*a(n-12) -13*a(n-13) -27*a(n-14) -38*a(n-15) -40*a(n-16) -34*a(n-17) -19*a(n-18) +19*a(n-20) +34*a(n-21) +40*a(n-22) +38*a(n-23) +27*a(n-24) +13*a(n-25) -3*a(n-26) -14*a(n-27) -21*a(n-28) -21*a(n-29) -17*a(n-30) -10*a(n-31) -3*a(n-32) +2*a(n-33) +5*a(n-34) +5*a(n-35) +4*a(n-36) +2*a(n-37) +a(n-38)

A251431 Number of length 4+2 0..n arrays with the sum of the maximum minus twice the median plus the minimum of adjacent triples multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

40, 341, 1888, 6589, 18952, 44465, 94452, 180625, 324136, 545021, 878516, 1353921, 2024188, 2932293, 4149792, 5735557, 7786700, 10376093, 13629740, 17642437, 22564780, 28519073, 35692724, 44219965, 54334868, 66206505, 80091608, 96191873
Offset: 1

Views

Author

R. H. Hardin, Dec 02 2014

Keywords

Comments

Row 4 of A251428

Examples

			Some solutions for n=8
..0....8....6....3....3....0....8....3....6....5....3....2....5....2....4....5
..5....7....8....8....8....7....6....2....8....2....0....2....6....1....4....4
..5....2....5....3....7....8....1....6....3....7....1....3....1....4....1....1
..3....7....7....6....5....7....5....2....5....1....5....0....1....8....0....2
..0....1....0....3....0....0....2....7....2....0....2....8....0....3....0....2
..4....0....2....8....5....4....1....3....5....2....6....5....1....4....2....0
		

A251432 Number of length 5+2 0..n arrays with the sum of the maximum minus twice the median plus the minimum of adjacent triples multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

56, 1003, 7458, 34893, 122452, 349257, 863840, 1913597, 3880178, 7339389, 13094686, 22262367, 36301476, 57177921, 87246716, 129715887, 188194300, 267455817, 372765018, 511177141, 689729654, 918345073, 1206588778, 1567668037
Offset: 1

Views

Author

R. H. Hardin, Dec 02 2014

Keywords

Comments

Row 5 of A251428

Examples

			Some solutions for n=5
..0....4....2....3....1....3....1....3....1....4....3....3....1....2....1....0
..2....3....1....1....4....0....3....0....2....2....3....3....2....2....2....4
..1....1....5....2....2....3....1....3....1....3....5....4....3....0....2....1
..4....3....4....3....2....1....4....4....5....4....1....1....1....0....0....0
..2....5....1....4....2....3....2....2....4....0....3....3....3....4....5....2
..3....4....4....0....2....4....4....4....5....1....3....1....0....5....2....5
..4....5....4....1....3....3....4....5....1....2....3....4....5....0....5....5
		

A251426 Number of length n+2 0..6 arrays with the sum of the maximum minus twice the median plus the minimum of adjacent triples multiplied by some arrangement of +-1 equal to zero.

Original entry on oeis.org

61, 725, 5097, 44465, 349257, 2647405, 19285211, 137949185, 976032575, 6871688649, 48247321093, 338304918133, 2370405542621, 16602202832585, 116254396792509, 813946050011849, 5698326553998227, 39891307203318801
Offset: 1

Views

Author

R. H. Hardin, Dec 02 2014

Keywords

Comments

Column 6 of A251428

Examples

			Some solutions for n=4
..0....2....5....5....5....1....1....0....0....6....1....2....4....1....4....3
..6....4....2....3....6....0....0....3....3....6....3....1....1....0....4....1
..1....1....0....0....6....6....0....2....5....4....3....0....6....1....6....5
..0....1....5....1....4....4....2....2....0....5....5....3....0....6....3....2
..2....2....4....3....5....2....4....6....3....2....1....3....5....5....3....5
..4....6....2....6....2....4....1....6....5....5....5....1....2....2....1....4
		
Showing 1-10 of 13 results. Next