cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251482 a(n) = floor(prime(n)/log(n)) + ceiling(prime(n)/log(prime(n))) - 2*n, n >=2.

Original entry on oeis.org

3, 2, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, -1, 0, -1, 0, 2, 0, 0, -1, -2, -3, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, -1, 1, 0, -1, -3, 0, 3, 2, 1, 0, 0, -2, 0, 1, 1, 1, -1, -1, -2, -3, -2, 2, 1, -1, -1, 2, 1, 3, 2, 1, 1, 2, 1, 1, 1, 1, 2, 0, 2, 3, 1, 3, 1, 1, 0, 0, 1, 0, -2, -3, -1, 0, 0, 0, -1, -1, 1, -1, 3
Offset: 2

Views

Author

Freimut Marschner, Dec 07 2014

Keywords

Comments

The prime number theorem implies prime(n)/log(prime(n)) < n < prime(n)/log(n), n >= 2. From this follows a(n).

Examples

			a(4) = floor(5.04...) + ceiling(3.59...) - 2*4 = 5 + 4 - 2*4 = 1.
		

Crossrefs

Cf. A086861 (floor(prime(n)/log(prime(n)))), A085581 (floor(prime(n)/log(n))).
Cf. A087724 (-PrimePi(n) + floor(prime(n)/log(n)) - 2), A000720 (pi(n)).
Cf. A060715 (Number of primes between n and 2n exclusive).

Programs

  • Magma
    [Floor(NthPrime(n)/Log(n)) + Ceiling(NthPrime(n)/Log(NthPrime(n))) - 2*n: n in [2..100]]; // Vincenzo Librandi, Mar 25 2015
  • Mathematica
    a251482[n_Integer] :=
    Floor[Prime[#]/Log[#]] + Ceiling[Prime[#]/Log[Prime[#]]] - 2 # & /@
    Range[2, n]; a251482[100] (* Michael De Vlieger, Dec 15 2014 *)
  • PARI
    vector(100,n,floor(prime(n+1)/log(n+1))+ceil(prime(n+1)/log(prime(n+1)))-2*n-2) \\ Derek Orr, Dec 30 2014
    

Formula

a(n) = A085581(n) + (A086861(n) + 1) - 2*n.