A251561 A permutation of the natural numbers: interchange p and 2p for every prime p.
1, 4, 6, 2, 10, 3, 14, 8, 9, 5, 22, 12, 26, 7, 15, 16, 34, 18, 38, 20, 21, 11, 46, 24, 25, 13, 27, 28, 58, 30, 62, 32, 33, 17, 35, 36, 74, 19, 39, 40, 82, 42, 86, 44, 45, 23, 94, 48, 49, 50, 51, 52, 106, 54, 55, 56, 57, 29, 118, 60, 122, 31, 63, 64, 65, 66
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- A. B. Frizell, Certain non-enumerable sets of infinite permutations. Bull. Amer. Math. Soc. 21 (1915), no. 10, 495-499.
- Index entries for sequences that are permutations of the natural numbers
Programs
-
Haskell
a251561 1 = 1 a251561 n | q == 1 = 2 * p | p == 2 && a010051' q == 1 = q | otherwise = n where q = div n p; p = a020639 n -- Reinhard Zumkeller, Dec 27 2014
-
Mathematica
a251561[n_] := Block[{f}, f[x_] := Which[PrimeQ[x], 2 x, PrimeQ[x/2], x/2, True, x]; Array[f, n]]; a251561[66] (* Michael De Vlieger, Dec 26 2014 *)
-
Python
from sympy import isprime def A251561(n): if n == 2: return 4 q,r = divmod(n,2) if r : if isprime(n): return 2*n return n if isprime(q): return q return n # Chai Wah Wu, Dec 26 2014
Comments