cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251571 G.f.: M(F(x)) is a power series in x consisting entirely of positive integer coefficients such that M(F(x) - x^k) has negative coefficients for k>0, where M(x) = 1 + x*M(x) + x*M(x)^2 is the g.f. of the Motzkin numbers A001006.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 13, 19, 27, 39, 55, 79, 113, 160, 228, 322, 455, 641, 902, 1268, 1777, 2490, 3483, 4864, 6791, 9468, 13189, 18358, 25527, 35473, 49248, 68336, 94751, 131288, 181815, 251627, 348051, 481180, 664885, 918285, 1267663, 1749212, 2412635, 3326303, 4584236, 6315428, 8697260
Offset: 0

Views

Author

Paul D. Hanna, Jan 19 2015

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 6*x^5 + 9*x^6 + 13*x^7 +...
such that A(x) = M(F(x)),
where F(x) is the g.f. of A251570:
F(x) = x - x^3 - x^4 + x^5 - x^7 - x^8 + x^10 - x^11 - x^13 - x^14 - x^16 - x^17 - x^18 - x^20 - x^22 - x^26 - x^27 - x^28 - x^29 - x^32 - x^33 - x^35 - x^36 - x^39 - x^41 - x^43 - x^44 - x^45 - x^46 - x^47 - x^48 - x^50 +...
and M(x) is the g.f. of the Motzkin numbers:
M(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 21*x^5 + 51*x^6 + 127*x^7 + 323*x^8 + 835*x^9 + 2188*x^10 + 5798*x^11 + 15511*x^12 +...
		

Crossrefs

Programs

  • PARI
    /* Prints initial N+2 terms: */
    N=100;
    /* M(x) = 1 + x*M(x) + x^2*M(x)^2 is the g.f. of Motzkin numbers: */
    {M=1/x*serreverse(x/(1+x+x^2 +x*O(x^(2*N+10)))); M +O(x^21) }
    /* Print terms as you build vector A, then print a(n) at the end: */
    {A=[1, 0]; print1("1, 0, ");
    for(l=1, N, A=concat(A, -3);
    for(i=1, 4, A[#A]=A[#A]+1;
    V=Vec(subst(M, x, x*truncate(Ser(A)) +O(x^floor(2*#A+1)) ));
    if((sign(V[2*#A])+1)/2==1, print1(A[#A], ", "); break)); );
    Vec(subst(M,x,x*Ser(A)))}