cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251592 Triangle of coefficients of polynomials P(n,t) related to the Mittag-Leffler function, where P(n,t) = Product_{k=0..n-2} n*t-k.

Original entry on oeis.org

1, 0, 2, 0, -3, 9, 0, 8, -48, 64, 0, -30, 275, -750, 625, 0, 144, -1800, 7560, -12960, 7776, 0, -840, 13426, -77175, 204085, -252105, 117649, 0, 5760, -112896, 831488, -3010560, 5734400, -5505024, 2097152, 0, -45360, 1058508, -9573228
Offset: 1

Views

Author

Jean-François Alcover, Dec 05 2014

Keywords

Comments

Second column (unsigned) 2, 3, 8, 30, 144, ... is A001048.
Diagonal 1, 2, 9, 64, 625, 7776, ... is A000169.

Examples

			Triangle begins :
  1;
  0,   2;
  0,  -3,     9;
  0,   8,   -48,   64;
  0, -30,   275, -750,    625;
  0, 144, -1800, 7560, -12960, 7776;
  ...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1998

Crossrefs

Cf. A000169, A001048, A156136, A000108 (B_2(x)), A001764 (B_3(x)), A002293 (B_4(x)), A002294 (B_5(x)), A002295 (B_6(x)), A002296 (B_7(x)), A007556 (B_8(x)), A062994 (B_9(x)), A059968 (B_10(x)), A230388 (B_11(x)), A139526, A260687.

Programs

  • Mathematica
    P[n_, t_] := Product[n*t - k, {k, 0, n-2}]; row[n_] := CoefficientList[P[n, t], t]; Table[row[n], {n, 1, 10}] // Flatten

Formula

P(n,t) = (n-1)!*binomial(n*t, n-1).
From Peter Bala, Nov 15 2015: (Start)
E.g.f. (with constant term 1): B_t(x) = Sum_{n >= 0} 1/(n*t + 1)*binomial(n*t + 1,n)*x^n = 1 + x + 2*t*x^2/2! + 3*t(3*t - 1)*x^3/3! + 4*t*(4*t - 1)*(4*t - 2)*x^4/4! + ... is the generalized binomial series of Lambert. See Graham et al., Section 5.4 and Section 7.5.
In the notation of the Bala link, B_t(x) = I^t(1 + x) where I^t is a fractional inversion operator. B_(1+t)(x) is the e.g.f. for A260687.
B_t(x) = 1 + x*B_t(x)^t.
For complex r, B_t(x)^r = Sum_{n >= 0} r/(n*t + r)*binomial(n*t + r,n)*x^n.
log (B_t(x)) = Sum_{n >= 1} 1/(n*t)*binomial(n*t,n)*x^n.
B_2(x) is the o.g.f. for the Catalan numbers A000108. B_t(x) for t = 3,4,5,... gives the o.g.f. for various Fuss-Catalan sequences. See the cross references. (End)