cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251618 Smallest term in A098550 having prime(n) as a factor.

Original entry on oeis.org

2, 3, 15, 14, 22, 39, 51, 38, 69, 87, 62, 74, 123, 86, 94, 106, 118, 122, 201, 142, 146, 158, 249, 178, 291, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 454, 458, 466, 478, 482, 502, 514
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 07 2014

Keywords

Comments

Largest prime factor of a(n) = prime(n);
a(n) is composite for n > 2;
first column in A251637;
conjecture: for n > 2: a(n) = 2*prime(n) or a(n) = 3*prime(n);
conjecture: for n > 25: a(n) = 2*prime(n).

Crossrefs

Cf. A098550, A000040, A251637, A251619 (smallest prime factor), A006530.

Programs

  • Haskell
    import Data.List (find); import Data.Maybe (fromJust)
    a251618 n = fromJust $
                find (\x -> mod x (fromIntegral $ a000040 n) == 0) a098550_list
  • Mathematica
    nmax = 100;
    b[n_] := b[n] = If[n <= 4, n, For[k = 1, True, k++, If[FreeQ[Array[b, n-1], k] && GCD[k, b[n-1]] == 1 && GCD[k, b[n-2]] > 1, Return[k]]]];
    A098550 = Array[b, 12*nmax]; (* If the message Missing[NotFound] appears, the coefficient 12 in 12*nmax should be increased. *)
    a[n_] := SelectFirst[A098550, Divisible[#, Prime[n]]&];
    Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, Sep 27 2021 *)