cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A251715 Array: A251637(n,k) / prime(n).

Original entry on oeis.org

1, 1, 2, 3, 3, 4, 2, 1, 5, 7, 2, 5, 5, 2, 3, 3, 1, 1, 7, 4, 6, 3, 1, 3, 3, 2, 7, 8, 2, 1, 2, 5, 4, 4, 9, 5, 3, 1, 5, 5, 4, 13, 9, 13, 10, 3, 1, 5, 2, 7, 9, 7, 17, 11, 11, 2, 1, 5, 3, 4, 4, 7, 9, 11, 15, 13, 2, 1, 2, 2, 7, 7, 9, 6, 6, 13, 17, 14, 3, 1, 3, 5
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 09 2014

Keywords

Comments

T(n,k) = A251637(n,k) / A000040(n);
A251637(n,k) = T(n,k) * A000040(n);
for n > 2: T(n,1) = A251619(n);
conjecture: A098550 is a permutation of the positive integers iff all rows are permutations of the positive integers.
For third column with row numbers > 4: see A251542. - Reinhard Zumkeller, Dec 16 2014

Examples

			.   n   p |  A251637(n,k) / p, with p = prime(n), n = 1..25, k = 1..20
.  -------+-----------------------------------------------------------
.   1   2 |  1 2 4 7 3  6 8  5 10 11 13 14 16  9 12 17 18 15 19 21 22
.   2   3 |  1 3 5 2 4  7 9 13 11 15 17  6  8 12 10 21 14 19 23 16 25
.   3   5 |  3 1 5 7 2  4 9 17 11 13  6 19  8 10 23 15 12 35 21 14 16
.   4   7 |  2 5 1 3 4 13 7  9  6  8 11 17 19 23 25 15 10 12 47 29 21
.   5  11 |  2 1 3 5 4  9 7  6  8 15 13 11 17 10 12 21 19 14 16 25 18
.   6  13 |  3 1 2 5 7  4 9  6  8 15 11 10 12 17 13 19 21 14 16 23 25
.   7  17 |  3 1 5 2 4  7 9  6 11  8 10 15 13 12 14 21 17 16 19 23 25
.   8  19 |  2 1 5 3 7  4 9  6  8 11 13 10 15 12 14 21 17 19 23 16 25
.   9  23 |  3 1 5 2 7  4 6  9  8 11 13 15 10 12 19 17 14 21 16 25 18
.  10  29 |  3 1 2 5 7  4 6  9  8 11 13 10 15 12 17 14 21 19 16 25 23
.  11  31 |  2 1 3 5 4  7 9  6 11 13  8 15 10 12 17 19 14 21 16 23 18
.  12  37 |  2 1 3 5 4  7 6  9  8 11 15 10 17 13 12 23 19 21 14 16 18
.  13  41 |  3 1 2 5 4  7 6  9 11  8 10 13 15 12 17 14 21 19 16 25 23
.  14  43 |  2 1 3 5 4  7 9  6 11  8 10 15 13 12 14 19 17 21 16 23 18
.  15  47 |  2 1 7 3 5  4 6  9 11  8 10 13 15 12 17 19 14 21 16 23 25
.  16  53 |  2 1 5 3 4  7 6  9  8 11 13 10 15 12 17 14 21 19 16 18 25
.  17  59 |  2 1 3 5 4  7 6  9 11  8 13 10 15 17 12 14 19 21 16 23 18
.  18  61 |  2 1 7 3 5  4 6  9 11  8 13 10 15 12 17 14 19 21 16 23 18
.  19  67 |  3 1 5 2 4  7 9  6  8 11 13 10 15 12 17 14 19 21 16 23 18
.  20  71 |  2 1 3 5 4  7 6  9  8 11 10 15 13 12 17 14 19 21 16 23 18
.  21  73 |  2 1 5 3 4  7 6  9  8 11 10 13 15 12 17 14 19 21 16 23 18
.  22  79 |  2 1 3 5 4  7 6  9  8 11 13 10 15 12 14 17 19 21 16 23 18
.  23  83 |  3 1 7 2 5  4 6  9 11  8 13 10 15 12 17 19 14 21 16 23 18
.  24  89 |  2 1 3 5 4  7 6  9  8 11 13 10 15 12 17 14 21 19 16 23 18
.  25  97 |  3 1 7 2 5  4 6  9 11  8 10 13 15 12 17 14 19 21 16 23 18 .
.  --------------------------------------------------------------------
See table A251637 for T(n,k) * p.
		

Crossrefs

Extensions

Wrong data replaced; Reinhard Zumkeller, Dec 15 2014

A251618 Smallest term in A098550 having prime(n) as a factor.

Original entry on oeis.org

2, 3, 15, 14, 22, 39, 51, 38, 69, 87, 62, 74, 123, 86, 94, 106, 118, 122, 201, 142, 146, 158, 249, 178, 291, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 454, 458, 466, 478, 482, 502, 514
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 07 2014

Keywords

Comments

Largest prime factor of a(n) = prime(n);
a(n) is composite for n > 2;
first column in A251637;
conjecture: for n > 2: a(n) = 2*prime(n) or a(n) = 3*prime(n);
conjecture: for n > 25: a(n) = 2*prime(n).

Crossrefs

Cf. A098550, A000040, A251637, A251619 (smallest prime factor), A006530.

Programs

  • Haskell
    import Data.List (find); import Data.Maybe (fromJust)
    a251618 n = fromJust $
                find (\x -> mod x (fromIntegral $ a000040 n) == 0) a098550_list
  • Mathematica
    nmax = 100;
    b[n_] := b[n] = If[n <= 4, n, For[k = 1, True, k++, If[FreeQ[Array[b, n-1], k] && GCD[k, b[n-1]] == 1 && GCD[k, b[n-2]] > 1, Return[k]]]];
    A098550 = Array[b, 12*nmax]; (* If the message Missing[NotFound] appears, the coefficient 12 in 12*nmax should be increased. *)
    a[n_] := SelectFirst[A098550, Divisible[#, Prime[n]]&];
    Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, Sep 27 2021 *)
Showing 1-2 of 2 results.