A249870 Rational parts of the Q(sqrt(3)) integers giving the square of the radii for lattice point circles for the Archimedean tiling (3, 4, 6, 4).
0, 1, 2, 3, 2, 4, 4, 4, 5, 6, 8, 8, 7, 8, 10, 10, 10, 13, 14, 11, 12, 13, 15, 14, 16, 16, 17, 16, 19, 20, 22, 19, 20, 20, 24, 23, 21, 25, 22, 23, 28, 26, 26, 28, 31, 28, 32, 28, 28, 30, 32, 34, 35, 32, 33, 38, 34, 36, 38, 37, 40, 37, 38, 43, 40, 44, 40, 46
Offset: 0
Examples
The pairs [a(n), A249871(n)] for the squares of the radii R2(n) begin: [0, 0], [1, 0], [2, 0], [3, 0], [2, 1], [4, 0], [4, 1], [4, 2], [5, 2], [6, 3], [8, 2], [8, 3], [7, 4], [8, 4], [10, 3], ... The corresponding radii R(n) are (Maple 10 digits, if not an integer): 0, 1, 1.414213562, 1.732050808, 1.931851653, 2, 2.394170171, 2.732050808, 2.909312911, 3.346065215, 3.385867927, 3.632650881, 3.732050808, 3.863703305, 3.898224265 ...
Links
- Wolfdieter Lang, On lattice point circles for the Archimedean tiling (3, 4, 6, 4)
- Wikipedia, Archimedean tilings
Comments