A251635 Riordan array (1-2*x,x), inverse of Riordan array (1/(1-2*x), x) = A130321.
1, -2, 1, 0, -2, 1, 0, 0, -2, 1, 0, 0, 0, -2, 1, 0, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0
Offset: 0
Examples
The triangle T(n, k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 ... 0: 1 1: -2 1 2: 0 -2 1 3: 0 0 -2 1 4: 0 0 0 -2 1 5: 0 0 0 0 -2 1 6: 0 0 0 0 0 -2 1 7: 0 0 0 0 0 0 -2 1 8: 0 0 0 0 0 0 0 -2 1 9: 0 0 0 0 0 0 0 0 -2 1 10: 0 0 0 0 0 0 0 0 0 -2 1 ...
Programs
-
Haskell
a251635 n k = a251635_tabl !! n !! k a251635_row n = a251635_tabl !! n a251635_tabl = [1] : iterate (0 :) [-2, 1] -- Reinhard Zumkeller, Jan 11 2015
Formula
T(n, k) = 0 if n < k and k = 0..(n-2) for n >= 2, and T(n, n) = 1 and T(n, n-1) = -2.
G.f. for row polynomials P(n, x) = -2^x^(n-1) + x^n is (1-2*z)/(1-x*z).
G.f. for k-th column: (1-2*x)*x^k, k >= 0.
Comments