cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A251740 8-step Fibonacci sequence starting with 0,0,0,0,0,1,0,0.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 4, 8, 16, 32, 63, 126, 252, 503, 1004, 2004, 4000, 7984, 15936, 31809, 63492, 126732, 252961, 504918, 1007832, 2011664, 4015344, 8014752, 15997695, 31931898, 63737064, 127221167, 253937416, 506867000, 1011722336, 2019429328
Offset: 0

Views

Author

Arie Bos, Dec 07 2014

Keywords

Crossrefs

Other 8-step Fibonacci sequences are A079262, A105754, A251672, A251741, A251742, A251744, A251745.

Programs

  • Mathematica
    LinearRecurrence[Table[1, {8}], {0, 0, 0, 0, 0, 1, 0, 0}, 43] (* Michael De Vlieger, Dec 08 2014 *)

Formula

a(n+8) = a(n)+a(n+1)+a(n+2)+a(n+3)+a(n+4)+a(n+5)+a(n+6)+a(n+7).
G.f.: x^5*(-1+x+x^2)/(-1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8) . - R. J. Mathar, Mar 28 2025
a(n) = A079262(n+2)-A079262(n+1)-A079262(n). - R. J. Mathar, Mar 28 2025

A251741 8-step Fibonacci sequence starting with 0,0,0,0,1,0,0,0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 4, 8, 16, 31, 62, 124, 248, 495, 988, 1972, 3936, 7856, 15681, 31300, 62476, 124704, 248913, 496838, 991704, 1979472, 3951088, 7886495, 15741690, 31420904, 62717104, 125185295, 249873752, 498755800, 995532128, 1987113168
Offset: 0

Views

Author

Arie Bos, Dec 07 2014

Keywords

Crossrefs

Other 8-step Fibonacci sequences are A079262, A105754, A251672, A251740, A251742, A251744, A251745.

Programs

  • Mathematica
    LinearRecurrence[Table[1, {8}], {0, 0, 0, 0, 1, 0, 0, 0}, 43] (* Michael De Vlieger, Dec 09 2014 *)

Formula

a(n+8) = a(n)+a(n+1)+a(n+2)+a(n+3)+a(n+4)+a(n+5)+a(n+6)+a(n+7).
G.f.: x^4*(-1+x+x^2+x^3)/(-1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8) . - R. J. Mathar, Mar 28 2025

A251742 8-step Fibonacci sequence starting with 0,0,0,1,0,0,0,0.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 0, 1, 2, 4, 8, 15, 30, 60, 120, 240, 479, 956, 1908, 3808, 7601, 15172, 30284, 60448, 120656, 240833, 480710, 959512, 1915216, 3822831, 7630490, 15230696, 30400944, 60681232, 121121631, 241762552, 482565592, 963215968, 1922609105
Offset: 0

Views

Author

Arie Bos, Dec 07 2014

Keywords

Crossrefs

Other 8-step Fibonacci sequences are A079262, A105754, A251672, A251740, A251741, A251744, A251745.

Programs

  • Mathematica
    LinearRecurrence[Table[1, {8}], {0, 0, 0, 1, 0, 0, 0, 0}, 43] (* Michael De Vlieger, Dec 09 2014 *)

Formula

a(n+8) = a(n)+a(n+1)+a(n+2)+a(n+3)+a(n+4)+a(n+5)+a(n+6)+a(n+7).
G.f.: x^3*(-1+x+x^2+x^3+x^4)/(-1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8) . - R. J. Mathar, Mar 28 2025
a(n) = A172318(n-3)-2*A172318(n-4)+A172318(n-8) . - R. J. Mathar, Mar 28 2025

A251744 8-step Fibonacci sequence starting with 0,0,1,0,0,0,0,0.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 0, 0, 1, 2, 4, 7, 14, 28, 56, 112, 224, 447, 892, 1780, 3553, 7092, 14156, 28256, 56400, 112576, 224705, 448518, 895256, 1786959, 3566826, 7119496, 14210736, 28365072, 56617568, 113010431, 225572344, 450249432, 898711905, 1793856984
Offset: 0

Views

Author

Arie Bos, Dec 07 2014

Keywords

Crossrefs

Other 8-step Fibonacci sequences are A079262, A105754, A251672, A251740, A251741, A251742, A251745.

Programs

  • Mathematica
    LinearRecurrence[Table[1, {8}], {0, 0, 1, 0, 0, 0, 0, 0}, 43] (* Michael De Vlieger, Dec 09 2014 *)

Formula

a(n+8) = a(n)+a(n+1)+a(n+2)+a(n+3)+a(n+4)+a(n+5)+a(n+6)+a(n+7).
G.f.: x^2*(-1+x+x^2+x^3+x^4+x^5)/(-1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8) . - R. J. Mathar, Mar 28 2025

A251745 8-step Fibonacci sequence starting with 0,1,0,0,0,0,0,0.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 3, 6, 12, 24, 48, 96, 192, 383, 764, 1525, 3044, 6076, 12128, 24208, 48320, 96448, 192513, 384262, 766999, 1530954, 3055832, 6099536, 12174864, 24301408, 48506368, 96820223, 193256184, 385745369, 769959784, 1536863736, 3067627936
Offset: 0

Views

Author

Arie Bos, Dec 07 2014

Keywords

Crossrefs

Other 8-step Fibonacci sequences are A079262, A105754, A251672, A251740, A251741, A251742, A251744.

Programs

  • Mathematica
    LinearRecurrence[Table[1, {8}], {0, 1, 0, 0, 0, 0, 0, 0}, 43] (* Michael De Vlieger, Dec 09 2014 *)

Formula

a(n+8) = a(n)+a(n+1)+a(n+2)+a(n+3)+a(n+4)+a(n+5)+a(n+6)+a(n+7).
G.f.: x*(-1+x+x^2+x^3+x^4+x^5+x^6)/(-1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8) . - R. J. Mathar, Mar 28 2025

A251654 4-step Fibonacci sequence starting with 0, 1, 1, 0.

Original entry on oeis.org

0, 1, 1, 0, 2, 4, 7, 13, 26, 50, 96, 185, 357, 688, 1326, 2556, 4927, 9497, 18306, 35286, 68016, 131105, 252713, 487120, 938954, 1809892, 3488679, 6724645, 12962170, 24985386, 48160880, 92833081, 178941517, 344920864, 664856342, 1281551804
Offset: 0

Views

Author

Arie Bos, Dec 06 2014

Keywords

Crossrefs

Other 4-step Fibonacci sequences are A000078, A000288, A001630, A001631, A001648, A073817, A100532, A251655, A251656, A251672, A251703, A251704, A251705.

Programs

  • J
    NB. see A251655 for the program and apply it to 0,1,1,0.
  • Mathematica
    LinearRecurrence[Table[1, {4}], {0, 1, 1, 0}, 36] (* Michael De Vlieger, Dec 09 2014 *)

Formula

a(n+4) = a(n) + a(n+1) + a(n+2) + a(n+3).
G.f.: x*(-1+2*x^2)/(-1+x+x^2+x^3+x^4). - R. J. Mathar, Mar 28 2025
a(n) = A000078(n+2)-2*A000078(n). - R. J. Mathar, Mar 28 2025

A251655 4-step Fibonacci sequence starting with 0, 1, 1, 1.

Original entry on oeis.org

0, 1, 1, 1, 3, 6, 11, 21, 41, 79, 152, 293, 565, 1089, 2099, 4046, 7799, 15033, 28977, 55855, 107664, 207529, 400025, 771073, 1486291, 2864918, 5522307, 10644589, 20518105, 39549919, 76234920, 146947533, 283250477, 545982849, 1052415779, 2028596638
Offset: 0

Views

Author

Arie Bos, Dec 06 2014

Keywords

Crossrefs

Other 4-step Fibonacci sequences are A000078, A000288, A001630, A001631, A001648, A073817, A100532, A251654, A251656, A251672, A251703, A251704, A251705.

Programs

  • J
    (see www.jsoftware.com) First construct the generating matrix
       [M=: (#.@}: + {:)\"1&.|: <:/~i.4
    1 1 1 1
    1 2 2 2
    2 3 4 4
    4 6 7 8
    Given that matrix, one can produce the first 4*250 numbers with
    , M(+/ . *)^:(i.250) 0 1 1 1x
  • Mathematica
    LinearRecurrence[Table[1, {4}], {0, 1, 1, 1}, 36] (* Michael De Vlieger, Dec 09 2014 *)

Formula

a(n+4) = a(n) + a(n+1) + a(n+2) + a(n+3).
G.f.: x*(x-1)*(1+x)/(-1+x+x^2+x^3+x^4) . - R. J. Mathar, Mar 28 2025
a(n) = A000078(n+2)-A000078(n). - R. J. Mathar, Mar 28 2025
Showing 1-7 of 7 results.