cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251688 G.f. satisfies: A(x) = exp( Sum_{n>=1} [Sum_{k=0..2*n} T(n,k)^2 * x^k] / A(x)^n * x^n/n ), where T(n,k) is the coefficient of x^k in (1+2*x)^n*(1+3*x)^n.

Original entry on oeis.org

1, 1, 25, 61, 336, 1200, 3600, 13500, 32400, 118800, 259200, 939600, 1944000, 6998400, 13996800, 50155200, 97977600, 349920000, 671846400, 2393452800, 4534963200, 16124313600, 30233088000, 107327462400, 199538380800, 707454259200, 1306069401600, 4625662464000, 8489451110400
Offset: 0

Views

Author

Paul D. Hanna, Feb 25 2015

Keywords

Comments

More generally, if G(x) = exp( Sum_{n>=1} [Sum_{k=0..2*n} T(n,k)^2 * x^k] / G(x)^n * x^n/n ), where T(n,k) is the coefficient of x^k in (1 + a*x)^n*(1 + b*x)^n, then G(x) = (1+x)*(1 + a^2*x^2)*(1 + b^2*x^2)*(1 + a^2*b^2*x^3) / (1 - a*b*x^2)^2; here a=2, b=3.
More generally, if G(x) = exp( Sum_{n>=1} [Sum_{k=0..2*n} T(n,k)^2 * x^k] / G(x)^n * x^n/n ), where T(n,k) is the coefficient of x^k in (p + q*x)^n*(r + s*x)^n, then G(x) = (1 + p^2*r^2*x)*(1 + p^2*s^2*x^2)*(1 + q^2*r^2*x^2)*(1 + q^2*s^2*x^3) / (1 - p*q*r*s*x^2)^2.

Examples

			G.f.: A(x) = 1 + x + 25*x^2 + 61*x^3 + 336*x^4 + 1200*x^5 + 3600*x^6 +...
where
log(A(x)) = (1 + 5^2*x + 6^2*x^2)/A(x) * x +
(1 + 10^2*x + 37^2*x^2 + 60^2*x^3 + 36^2*x^4)/A(x)^2 * x^2/2 +
(1 + 15^2*x + 93^2*x^2 + 305^2*x^3 + 558^2*x^4 + 540^2*x^5 + 216^2*x^6)/A(x)^3 * x^3/3 +
(1 + 20^2*x + 174^2*x^2 + 860^2*x^3 + 2641^2*x^4 + 5160^2*x^5 + 6264^2*x^6 + 4320^2*x^7 + 1296^2*x^8)/A(x)^4 * x^4/4 +
(1 + 25^2*x + 280^2*x^2 + 1850^2*x^3 + 7985^2*x^4 + 23525^2*x^5 + 47910^2*x^6 + 66600^2*x^7 + 60480^2*x^8 + 32400^2*x^9 + 7776^2*x^10)/A(x)^5 * x^5/5 +...
which involves the squares of coefficients in (1 + 5*x + 6*x^2)^n.
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff( (1+x)*(1+4*x^2)*(1+9*x^2)*(1+36*x^3) / ((1-6*x^2)^2 +x*O(x^n)), n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(k=0, n, polcoeff(((1+2*x)*(1+3*x) +x*O(x^k))^m, k)^2 *x^k) *x^m/(A+x*O(x^n))^m/m)+x*O(x^n))); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))

Formula

G.f.: (1+x)*(1+4*x^2)*(1+9*x^2)*(1+36*x^3) / (1-6*x^2)^2.