A251691 G.f.: G(F(x)) is a power series in x consisting entirely of positive integer coefficients such that G(F(x) - x^k) has negative coefficients for k>0, where G(x) = 1 + x*G(x)^3 is the g.f. of A001764 and F(x) is g.f. of A251690.
1, 1, 2, 4, 8, 17, 36, 78, 169, 370, 813, 1793, 3971, 8817, 19631, 43804, 97938, 219357, 492072, 1105398, 2486320, 5598805, 12620832, 28477139, 64311189, 145354456, 328772330, 744155150, 1685434388, 3819629781, 8661130303, 19649713303, 44601771038, 101285994072, 230110466746
Offset: 0
Keywords
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..120
Formula
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 17*x^5 + 36*x^6 + 78*x^7 + 169*x^8 + 370*x^9 + 813*x^10 + 1793*x^11 + 3971*x^12 +...
such that A(x) = G(F(x)), where G(x) = 1 + x*G(x)^3 is the g.f. of A001764:
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 + 7752*x^7 +...
and F(x) is the g.f. of A251690:
F(x) = x - x^2 - 2*x^3 - 2*x^4 - x^6 - 3*x^8 - 3*x^10 - 3*x^11 - 3*x^13 - 2*x^14 - 3*x^15 - x^16 - 2*x^17 - x^19 - 2*x^20 - 2*x^23 - 2*x^27 - 3*x^29 +...
Comments