cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251691 G.f.: G(F(x)) is a power series in x consisting entirely of positive integer coefficients such that G(F(x) - x^k) has negative coefficients for k>0, where G(x) = 1 + x*G(x)^3 is the g.f. of A001764 and F(x) is g.f. of A251690.

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 36, 78, 169, 370, 813, 1793, 3971, 8817, 19631, 43804, 97938, 219357, 492072, 1105398, 2486320, 5598805, 12620832, 28477139, 64311189, 145354456, 328772330, 744155150, 1685434388, 3819629781, 8661130303, 19649713303, 44601771038, 101285994072, 230110466746
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2014

Keywords

Crossrefs

Formula

G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 17*x^5 + 36*x^6 + 78*x^7 + 169*x^8 + 370*x^9 + 813*x^10 + 1793*x^11 + 3971*x^12 +...
such that A(x) = G(F(x)), where G(x) = 1 + x*G(x)^3 is the g.f. of A001764:
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 + 7752*x^7 +...
and F(x) is the g.f. of A251690:
F(x) = x - x^2 - 2*x^3 - 2*x^4 - x^6 - 3*x^8 - 3*x^10 - 3*x^11 - 3*x^13 - 2*x^14 - 3*x^15 - x^16 - 2*x^17 - x^19 - 2*x^20 - 2*x^23 - 2*x^27 - 3*x^29 +...