A251713 7-step Fibonacci sequence starting with (0,0,1,0,0,0,0).
0, 0, 1, 0, 0, 0, 0, 1, 2, 4, 7, 14, 28, 56, 112, 223, 444, 884, 1761, 3508, 6988, 13920, 27728, 55233, 110022, 219160, 436559, 869610, 1732232, 3450544, 6873360, 13691487, 27272952, 54326744, 108216929, 215564248, 429396264, 855341984, 1703810608, 3393929729
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,1,1,1,1).
Crossrefs
Programs
-
J
(see www.jsoftware.com) First construct the generating matrix [M=: (#.@}: + {:)\"1&.|: <:/~i.7 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 4 4 4 4 4 4 6 7 8 8 8 8 8 12 14 15 16 16 16 16 24 28 30 31 32 32 32 48 56 60 62 63 64 Given that matrix, one can produce the first 7*150 numbers by , M(+/ . *)^:(i.150) 0 0 1 0 0 0 0x
-
Mathematica
LinearRecurrence[Table[1, {7}], {0, 0, 1, 0, 0, 0, 0}, 40] (* Michael De Vlieger, Dec 09 2014 *)
Formula
a(n+7) = a(n) + a(n+1) + a(n+2) + a(n+3) + a(n+4) + a(n+5) + a(n+6).
G.f.: x^2*(-1+x+x^2+x^3+x^4)/(-1+x+x^2+x^3+x^4+x^5+x^6+x^7) . - R. J. Mathar, Mar 28 2025