cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251727 Numbers n > 1 for which gpf(n) > spf(n)^2, where spf and gpf (smallest and greatest prime factor of n) are given by A020639(n) and A006530(n).

Original entry on oeis.org

10, 14, 20, 22, 26, 28, 30, 33, 34, 38, 39, 40, 42, 44, 46, 50, 51, 52, 56, 57, 58, 60, 62, 66, 68, 69, 70, 74, 76, 78, 80, 82, 84, 86, 87, 88, 90, 92, 93, 94, 98, 99, 100, 102, 104, 106, 110, 111, 112, 114, 116, 117, 118, 120, 122, 123, 124, 126, 129, 130, 132, 134, 136, 138, 140, 141, 142, 145, 146, 148, 150, 152
Offset: 1

Views

Author

Antti Karttunen, Dec 17 2014. A new simpler definition found Jan 01 2015 and the original definition moved to the Comments section

Keywords

Comments

Numbers n > 1 for which the smallest r such that r^k <= spf(n) and gpf(n) < r^(k+1) [for some k >= 0] is gpf(n)+1. Here spf and gpf (smallest and greatest prime factor of n) are given by A020639(n) and A006530(n). (The original, equivalent definition of the sequence).
Numbers n > 1 such that A252375(n) = 1 + A006530(n). Equally, one can substitute A251725 for A252375.
Numbers n > 1 for which there doesn't exist any r <= gpf(n) such that r^k <= spf(n) and gpf(n) < r^(k+1), for some k >= 0, where spf and gpf (smallest and greatest prime factor of n) are given by A020639(n) and A006530(n).

Crossrefs

Complement: A251726. Subsequence: A138511.
Gives the positions of zeros in A252374 following its initial term.
Cf. A252371 (difference between the prime indices of gpf and spf of each a(n)).
Related permutations: A252757-A252758.