A251729 Number of gap-free but not complete compositions of n.
0, 1, 1, 2, 3, 3, 6, 6, 14, 12, 27, 33, 58, 86, 134, 210, 323, 539, 810, 1371, 2044, 3510, 5263, 8927, 13702, 22870, 35821, 58750, 93343, 152236, 243244, 395078, 634342, 1027876, 1656543, 2676693, 4325727, 6982440, 11299457, 18232217, 29518334, 47641410
Offset: 1
Keywords
Examples
a(6) = 3: [6], [3,3], [2,2,2]. a(7) = 6: [7], [3,4], [4,3], [2,2,3], [2,3,2], [3,2,2].
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- Alois P. Heinz, Plot of (a(n)+a(n+1)-a(n+2))/a(n+2) for n = 150..1000
- P. Hitczenko and A. Knopfmacher, Gap-free compositions and gap-free samples of geometric random variables, Discrete Math., 294 (2005), 225-239.
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n=0, `if`(i=0, 0, t!), `if`(i<1 or n add(b(n, i, 0), i=1..n): seq(a(n), n=1..50);
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[i == 0, 0, t!], If[i < 1 || n < i, 0, Sum[b[n - i*j, i - 1, t + j]/j!, {j, 1, n/i}]]]; a[n_] := Sum[b[n, i, 0], {i, 1, n}]; Array[a, 50] (* Jean-François Alcover, Jan 25 2021, after Alois P. Heinz *)
Comments