cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251756 a(0) = 0; for n>0, a(n) is the smallest integer not already in the list with a composite common factor with a(n-1).

Original entry on oeis.org

0, 4, 8, 12, 6, 18, 9, 27, 36, 16, 20, 10, 30, 15, 45, 54, 24, 28, 14, 42, 21, 63, 72, 32, 40, 44, 22, 66, 33, 99, 81, 90, 48, 52, 26, 78, 39, 117, 108, 56, 60, 50, 25, 75, 100, 64, 68, 34, 102, 51, 153, 126, 70, 35, 105, 84, 76, 38, 114, 57, 171, 135, 120, 80
Offset: 0

Views

Author

Keywords

Comments

It appears that this sequence includes every composite number.
The values are grouped close to five lines extending from the origin with respective slope of approximately { 0.608, 0.912, 1.22, 1.82, 2.74 } = {1, 1.5, 2, 3, 4.5} * 0.608. (As in A098550 these lines are not really straight.) - M. F. Hasler, Dec 14 2014

Crossrefs

Programs

  • Haskell
    import Data.List (delete)
    a251756 n = a251756_list !! (n-1)
    a251756_list = 0 : f 0 a002808_list where
       f x zs = g zs where
         g (y:ys) | d == 1 || a010051' d == 1 = g ys
                  | otherwise = y : f y (delete y zs)
                  where d = gcd x y
    -- Reinhard Zumkeller, Dec 08 2014
    
  • Mathematica
    g[a_List] := Block[{k = 4}, While[Not[CompositeQ[GCD[a[[-1]], k]]] || MemberQ[a, k], k++]; Append[a, k]]; Nest[g, {0}, 63] (* L. Edson Jeffery, Dec 08 2014 (after Robert G. Wilson v) *)
  • PARI
    invecn(v, k, x)=for(i=1, k, if(v[i]==x, return(i))); 0
    alist(n)=local(v=vector(n), x, g); v[1]=4; for(k=2, n, x=4; while(invecn(v, k-1, x)||(g=gcd(v[k-1], x))==1||isprime(g), x++); v[k]=x); v
    
  • Python
    from gmpy2 import gcd, is_prime
    A251756_list, l, s, b = [0], 0, 1, {}
    for _ in range(10**3):
        i = s
        while True:
            if not i in b:
                m = gcd(i, l)
                if not (m == 1 or is_prime(m)):
                    A251756_list.append(i)
                    l, b[i] = i, True
                    while s in b:
                        b.pop(s)
                        s += 1
                    break
            i += 1 # Chai Wah Wu, Dec 08 2014