cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A251762 10-step Fibonacci sequence starting with 0,0,0,0,0,1,0,0,0,0.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 2, 4, 8, 16, 32, 63, 126, 252, 504, 1008, 2015, 4028, 8052, 16096, 32176, 64320, 128577, 257028, 513804, 1027104, 2053200, 4104385, 8204742, 16401432, 32786768, 65541360, 131018400, 261908223, 523559418, 1046605032, 2092182960
Offset: 0

Views

Author

Arie Bos, Dec 07 2014

Keywords

Crossrefs

Other 10-step Fibonacci sequences are A251759, A251760, A251761, A251763, A251764, A251765, A251766.

Programs

  • Mathematica
    LinearRecurrence[Table[1, {10}], {0, 0, 0, 0, 0, 1, 0, 0, 0, 0}, 45] (* Michael De Vlieger, Dec 09 2014 *)
  • PARI
    concat(vector(5), Vec(x^5*(1 - x - x^2 - x^3 - x^4) / (1 - x - x^2 - x^3 - x^4 - x^5 - x^6 - x^7 - x^8 - x^9 - x^10) + O(x^50))) \\ Colin Barker, Apr 24 2017

Formula

a(n+10) = a(n) + a(n+1) + a(n+2) + a(n+3) + a(n+4) + a(n+5) + a(n+6) + a(n+7) + a(n+8) + a(n+9).
G.f.: x^5*(1 - x - x^2 - x^3 - x^4) / (1 - x - x^2 - x^3 - x^4 - x^5 - x^6 - x^7 - x^8 - x^9 - x^10). - Colin Barker, Apr 24 2017

A251759 10-step Fibonacci sequence starting with 0,0,0,0,0,0,0,0,1,0.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 511, 1022, 2043, 4084, 8164, 16320, 32624, 65216, 130368, 260608, 520960, 1041409, 2081796, 4161549, 8319014, 16629864, 33243408, 66454192, 132843168, 265555968, 530851328, 1061181696, 2121321983
Offset: 0

Views

Author

Arie Bos, Dec 07 2014

Keywords

Comments

a(n+10) equals the number of n-length binary words avoiding runs of zeros of lengths 10i+9, (i=0,1,2,...). - Milan Janjic, Feb 26 2015

Crossrefs

Other 10-step Fibonacci sequences are A251760, A251761, A251762, A251763, A251764, A251765, A251766.

Programs

  • Mathematica
    LinearRecurrence[Table[1, {10}], {0, 0, 0, 0, 0, 0, 0, 0, 1, 0}, 45] (* Michael De Vlieger, Dec 08 2014 *)

Formula

a(n+10) = a(n)+a(n+1)+a(n+2)+a(n+3) +a(n+4)+a(n+5)+a(n+6)+a(n+7) +a(n+8) +a(n+9).
G.f.: x^8*(x-1)/(-1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10) . - R. J. Mathar, Mar 28 2025
a(n) = A122265(n+1)-A122265(n). - R. J. Mathar, Mar 28 2025

A251760 10-step Fibonacci sequence starting with 0,0,0,0,0,0,0,1,0,0.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 4, 8, 16, 32, 64, 128, 255, 510, 1020, 2039, 4076, 8148, 16288, 32560, 65088, 130112, 260096, 519937, 1039364, 2077708, 4153377, 8302678, 16597208, 33178128, 66323696, 132582304, 265034496, 529808896, 1059097855, 2117156346
Offset: 0

Views

Author

Arie Bos, Dec 07 2014

Keywords

Crossrefs

Other 10-step Fibonacci sequences are A251759, A251761, A251762, A251763, A251764, A251765, A251766.

Programs

  • Mathematica
    LinearRecurrence[Table[1, {10}], {0, 0, 0, 0, 0, 0, 0, 1, 0, 0}, 45] (* Michael De Vlieger, Dec 08 2014 *)

Formula

a(n+10) = a(n)+a(n+1)+a(n+2)+a(n+3)+a(n+4)+a(n+5)+a(n+6)+a(n+7)+a(n+8) +a(n+9).
G.f.: x^7*(-1+x+x^2)/(-1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10) . - R. J. Mathar, Mar 28 2025
a(n) = A122265(n+2)-A122265(n+1)-A122265(n). - R. J. Mathar, Mar 28 2025

A251761 10-step Fibonacci sequence starting with 0,0,0,0,0,0,1,0,0,0.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 4, 8, 16, 32, 64, 127, 254, 508, 1016, 2031, 4060, 8116, 16224, 32432, 64832, 129600, 259073, 517892, 1035276, 2069536, 4137041, 8270022, 16531928, 33047632, 66062832, 132060832, 263992064, 527725055, 1054932218, 2108829160
Offset: 0

Views

Author

Arie Bos, Dec 07 2014

Keywords

Crossrefs

Other 10-step Fibonacci sequences are A251759, A251760, A251762, A251763, A251764, A251765, A251766.

Programs

  • Mathematica
    LinearRecurrence[Table[1, {10}], {0, 0, 0, 0, 0, 0, 1, 0, 0, 0}, 45] (* Michael De Vlieger, Dec 08 2014 *)

Formula

a(n+10) = a(n)+a(n+1)+a(n+2)+a(n+3)+a(n+4)+a(n+5)+a(n+6)+a(n+7)+a(n+8) +a(n+9).
G.f.: x^6*(-1+x+x^2+x^3)/(-1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10) . - R. J. Mathar, Mar 28 2025

A251764 10-step Fibonacci sequence starting with 0,0,0,1,0,0,0,0,0,0.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 2, 4, 8, 15, 30, 60, 120, 240, 480, 960, 1919, 3836, 7668, 15328, 30641, 61252, 122444, 244768, 489296, 978112, 1955264, 3908609, 7813382, 15619096, 31222864, 62415087, 124768922, 249415400, 498586032, 996682768, 1992387424
Offset: 0

Views

Author

Arie Bos, Dec 07 2014

Keywords

Crossrefs

Other 10-step Fibonacci sequences are A251759, A251760, A251761, A251762, A251763, A251765, A251766.

Programs

  • Mathematica
    LinearRecurrence[Table[1, {10}], {0, 0, 0, 1, 0, 0, 0, 0, 0, 0}, 45] (* Michael De Vlieger, Dec 09 2014 *)

Formula

a(n+10) = a(n)+a(n+1)+a(n+2)+a(n+3)+a(n+4)+a(n+5)+a(n+6)+a(n+7)+a(n+8) +a(n+9).
G.f.: x^3*(-1+x+x^2+x^3+x^4+x^5+x^6)/(-1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10) . - R. J. Mathar, Mar 28 2025

A251765 10-step Fibonacci sequence starting with 0,0,1,0,0,0,0,0,0,0.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 7, 14, 28, 56, 112, 224, 448, 896, 1791, 3580, 7156, 14305, 28596, 57164, 114272, 228432, 456640, 912832, 1824768, 3647745, 7291910, 14576664, 29139023, 58249450, 116441736, 232769200, 465309968, 930163296, 1859413760
Offset: 0

Views

Author

Arie Bos, Dec 07 2014

Keywords

Crossrefs

Other 10-step Fibonacci sequences are A251759, A251760, A251761, A251762, A251763, A251764, A251766.

Programs

  • Mathematica
    LinearRecurrence[Table[1, {10}], {0, 0, 1, 0, 0, 0, 0, 0, 0, 0}, 45] (* Michael De Vlieger, Dec 09 2014 *)

Formula

a(n+10) = a(n)+a(n+1)+a(n+2)+a(n+3)+a(n+4)+a(n+5)+a(n+6)+a(n+7)+a(n+8) +a(n+9).
G.f.: x^2*(-1 +x +x^2 +x^3 +x^4 +x^5 +x^6+ x^7)/(-1+x +x^2 +x^3 +x^4 +x^5 +x^6 +x^7 +x^8 +x^9 +x^10) . - R. J. Mathar, Feb 27 2023

A251766 10-step Fibonacci sequence starting with 0,1,0,0,0,0,0,0,0,0.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1535, 3068, 6133, 12260, 24508, 48992, 97936, 195776, 391360, 782336, 1563904, 3126273, 6249478, 12492823, 24973386, 49922264, 99795536, 199493136, 398790496, 797189632, 1593596928
Offset: 0

Views

Author

Arie Bos, Dec 07 2014

Keywords

Crossrefs

Other 10-step Fibonacci sequences are A251759, A251760, A251761, A251762, A251763, A251764, A251765.

Programs

  • Mathematica
    LinearRecurrence[Table[1, {10}], {0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, 45] (* Michael De Vlieger, Dec 09 2014 *)

Formula

a(n+10) = a(n)+a(n+1)+a(n+2)+a(n+3)+a(n+4)+a(n+5)+a(n+6)+a(n+7)+a(n+8) +a(n+9).
G.f.: x*(-1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8)/(-1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10) . - R. J. Mathar, Mar 28 2025
Showing 1-7 of 7 results.