A251782 Least even integer k such that numerator(B_k) == 0 (mod 37^n).
32, 284, 37580, 1072544, 55777784, 325656968, 42764158652, 2444284077476, 46872402575720, 4093248733492712, 167845040875289732, 4841789050865438960, 235423026877046134208, 7818983737604766777920, 95503904455394036720840, 6908622244227620311285724, 114945213060615779807957456
Offset: 1
Keywords
Examples
a(3) = 37580 because the numerator of B_37580 is divisible by 37^3 and there is no even integer less than 37580 for which this is the case.
Links
- Bernd C. Kellner and Robert G. Wilson v, Table of n, a(n) for n = 1..100
- Bernd C. Kellner, The Bernoulli Number Page
- Bernd C. Kellner, On irregular prime power divisors of the Bernoulli numbers, Math. Comp. 76 (2007), 405-441; arXiv:0409223 [math.NT], 2004.
Programs
-
Mathematica
p = 37; l = 32; LD = {7, 28, 21, 30, 4, 17, 26, 13, 32, 35, 27, 36, 32, 10, 21, 9, 11, 0, 1, 13, 6, 8, 10, 11, 10, 11, 32, 13, 30, 10, 6, 8, 2, 12, 1, 8, 2, 5, 3, 10, 19, 8, 4, 7, 19, 27, 33, 29, 29, 11, 2, 23, 8, 34, 5, 8, 35, 35, 13, 31, 29, 6, 7, 22, 13, 29, 7, 15, 22, 20, 19, 29, 2, 14, 2, 2, 31, 11, 4, 0, 27, 8, 10, 23, 17, 35, 15, 32, 22, 14, 7, 18, 8, 3, 27, 35, 33, 31, 6}; CalcIndex[L_, p_, l_, n_] := l + (p - 1) Sum[L[[i + 1]] p^i , {i, 0, n - 2}]; Table[CalcIndex[LD, p, l, n], {n, 1, Length[LD] + 1}] // TableForm
Formula
Numerator(B_{a(n)}) == 0 (mod 37^n).
Extensions
Edited for consistency with A299466 and A299467 by Bernd C. Kellner and Jonathan Sondow, Feb 20 2018
Comments