cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251860 Numbers n = concat(s,t) such that n = prime(s) + prime(t).

Original entry on oeis.org

254, 64581, 64582, 64611, 64612, 64626, 64676, 64698, 64706, 64711, 64712, 64724, 2159962, 3232398, 1998135468, 11520892878, 17788754556
Offset: 1

Views

Author

Paolo P. Lava, Dec 10 2014

Keywords

Comments

If we consider the product instead of the sum, n = concat(s,t) = prime(s) * prime(t), then the first terms are 14 and 2127. In fact:
14 = concat(1,4) and prime(1) * prime(4) = 2 * 7 = 14.
2127 = concat(2,127) and prime(2) * prime(127) = 3 * 709 = 2127.
a(18) > 8*10^10. - Giovanni Resta, May 26 2015

Examples

			254 = concat(2,54) and prime(2) + prime(54) = 3 + 251 = 254.
64581 = concat(6458,1) and prime(6458) + prime(1) = 64579 + 2 = 64581.
64582 = concat(6458,2) and prime(6458) + prime(2) = 64579 + 3 = 64582. Etc.
		

Crossrefs

Programs

  • Maple
    with(numtheory):P:=proc(q) local s,t,k,n;
    for n from 1 to q do for k from 1 to ilog10(n) do s:=n mod 10^k; t:=trunc(n/10^k); if s*t>0 then if ithprime(s)+ithprime(t)=n
    then print(n); break; fi; fi; od; od; end: P(10^6);
    # program from R. J. Mathar, Jan 22 2015:
    isA251860 := proc(n)
        local ti,i1,i2;
        if n >= 10 then
            for ti from 1 to A055642(n)-1 do
                i1 := modp(n,10^ti) ;
                i2 := floor(n/10^ti) ;
                if i1 > 0 and i2 > 0 then
                    if ithprime(i1)+ithprime(i2) = n then
                        return true;
                    end if;
                end if;
            end do:
            false;
        else
            false;
        end if;
    end proc:
    for n from 1 do
        if isA251860(n) then
            print(n);
        end if;
    end do:
  • PARI
    isok(n) = {my(nb = #Str(n)); for (k=1, nb-1, s = n\10^k; t = n % 10^k; if (s && t && prime(s)+ prime(t) == n, return (1));); return (0);} \\ Michel Marcus, Dec 10 2014

Formula

n = concat(s,t) = A000040(s) + A000040(t).

Extensions

a(13)-a(17) from Giovanni Resta, May 26 2015