cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251862 Numbers m such that m + 3 divides m^m - 3.

Original entry on oeis.org

3, 7, 10, 27, 727, 1587, 9838, 758206, 789223, 1018846, 1588126, 1595287, 2387206, 4263586, 9494746, 12697378, 17379860, 21480726, 25439767, 38541526, 44219926, 55561536, 62072326, 64335356, 70032586, 83142466, 85409276
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 10 2014

Keywords

Comments

m such that m+3 divides (-3)^m - 3. - Robert Israel, Dec 14 2014

Examples

			3 is in this sequence because 3 + 3 = 6 divides 3^3 - 3 = 24.
		

Crossrefs

Cf. ...............Numbers n such that x divides y, where:
...x.....y......k=0.......k=1.......k=2........k=3........
..n-k..n^n-k..A000027...A087156...A242787....A242788......
..n-k..n^n+k..A000027..see below..A249751....A252041......
..n+k..n^n-k..A000027...A004275...A251603..this sequence..
..n+k..n^n+k..A000027...A004273...A213382....A242800......
(For x=n-1 and y=n^n+1, the only terms are 0, 2 and 3. - David L. Harden, Jan 14 2015)

Programs

  • Magma
    [n: n in [2..10000] | Denominator((n^n-3)/(n+3)) eq 1];
    
  • Maple
    select(t ->((-3) &^ (t) - 3) mod (t+3) = 0, [$1..10^6]); # Robert Israel, Dec 14 2014
  • Mathematica
    a251862[n_] := Select[Range[n], Mod[PowerMod[#, #, # + 3] - 3, # + 3] == 0 &]; a251862[10^6] (* Michael De Vlieger, Dec 14 2014, after Robert G. Wilson v at A252041 *)
  • PARI
    isok(n) = Mod(n, n+3)^n == 3; \\ Michel Marcus, Dec 10 2014
    
  • Python
    A251862_list = [n for n in range(10**6) if pow(-3, n, n+3) == 3] # Chai Wah Wu, Jan 19 2015
  • Sage
    [n for n in range(10^4) if (n + 3).divides((-3)^n - 3)] # Peter Luschny, Jan 17 2015
    

Extensions

More terms from Michel Marcus, Dec 10 2014