A378125 Triangle T(n, k) read by rows. Let m be a nonzero rational number then T(n, m mod (n+1)) is the n-th coefficient in the Hasse-Weil L-series (q^(n+1) in the q-expansion) associated to the elliptic equation -4*x^3 + ((m+1)^2 + 8)*x^2 - 2*(m+3)*x + 1 - y^2 = 0.
1, -1, -2, 0, -3, -1, 1, 2, 1, 2, -1, -2, -1, -3, 1, 0, 6, 1, 0, 3, 2, 1, -1, -3, 1, -2, -2, -2, -1, 0, -1, 0, -1, 0, -1, 0, 0, 6, -2, 0, 6, -2, 0, 6, -2, 1, 4, 1, 6, -1, 2, 2, 2, 3, -2, -1, -5, 4, 3, 1, -2, -4, -5, -3, -1, 1, 0, -6, -1, 0, -3, -2, 0, -6, -1, 0, -3, -2, 1, -2, -7, 0, 2, -2, -1, 0, -5, -2, -5, 3, 4, -1, 2, 3, -2, 2, 4, 2, -2, 1, 6, -1, 4, 2, 4
Offset: 0
Examples
The triangle T(n, k) begins: q^(n+1) 0, 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 sum A001615 -------------------------------------------------------------------- [q^1] 1 1 1 [q^2] -1,-2 -3 3 [q^3] 0,-3,-1 -4 4 [q^4] 1, 2, 1, 2 6 6 [q^5] -1,-2,-1,-3, 1 6 6 [q^6] 0, 6, 1, 0, 3, 2 12 12 [q^7] 1,-1,-3, 1,-2,-2,-2 -8 8 [q^8] -1, 0,-1, 0,-1, 0,-1, 0 -4 12 <- not equal [q^9] 0, 6,-2, 0, 6,-2, 0, 6,-2 12 12 [q^10] 1, 4, 1, 6,-1, 2, 2, 2, 3,-2 18 18 [q^11] -1,-5, 4, 3, 1,-2,-4,-5,-3,-1, 1 12 12 [q^12] 0,-6,-1, 0,-3,-2, 0,-6,-1, 0,-3,-2 -24 24 [q^13] 1,-2,-7, 0, 2,-2,-1, 0,-5,-2,-5, 3, 4 -14 14 [q^14] -1, 2, 3,-2, 2, 4, 2,-2, 1, 6,-1, 4, 2, 4 24 24 [q^15] 0, 6, 1, 0,-3, 1, 0, 3, 3, 0, 3, 2, 0, 9,-1 24 24 [q^16] 1,-4, 1,-4, 1,-4, 1,-4, 1,-4, 1,-4, 1,-4, 1,-4 24 24
Programs
-
PARI
T(n, k) = ellak(ellinit(ellfromeqn(-4*x^3 + ((k+n+2)^2 + 8)*x^2 - 2*(k+n+4)*x + 1 - y^2)),n+1);
Formula
T(n, n) = A006571(n), case m =-1. Also the expansion of (eta(q) * eta(q^11))^2 in powers of q.
T(n, 1) = A007653(n), case m = 1.
T(2*n, n) = A251913(2*n+1), case m = -1/2. See first comment.
Let p be an odd prime with good reduction, then T(p-1, k) is odd iff -4*x^3 + ((k+1)^2 + 8)*x^2 - 2*(k+3)*x + 1 == 0 (mod p) has no solution.
Comments