cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251963 Numbers n such that the sum of the triangular numbers T(n) and T(n+1) is equal to an octagonal number N(m) for some m.

Original entry on oeis.org

0, 14, 208, 2910, 40544, 564718, 7865520, 109552574, 1525870528, 21252634830, 296011017104, 4122901604638, 57424611447840, 799821658665134, 11140078609864048, 155161278879431550, 2161117825702177664, 30100488280951055758, 419245718107612602960
Offset: 1

Views

Author

Colin Barker, Dec 11 2014

Keywords

Comments

Also nonnegative integers x in the solutions to 2*x^2-6*y^2+4*x+4*y+2+2 = 0, the corresponding values of y being A046184.

Examples

			14 is in the sequence because T(14)+T(15) = 105+120 = 225 = N(9).
		

Crossrefs

Programs

  • Magma
    I:=[0,14]; [n le 2 select I[n] else 14*Self(n-1)-Self(n-2)+12: n in [1..20]]; // Vincenzo Librandi, Mar 05 2016
  • Mathematica
    RecurrenceTable[{a[1] == 0, a[2] == 14, a[n] == 14 a[n-1]- a[n-2] + 12}, a, {n, 20}] (* Vincenzo Librandi, Mar 05 2016 *)
  • PARI
    concat(0, Vec(2*x^2*(x-7) / ((x-1)*(x^2-14*x+1)) + O(x^100)))
    

Formula

a(n) = 15*a(n-1)-15*a(n-2)+a(n-3).
G.f.: 2*x^2*(x-7) / ((x-1)*(x^2-14*x+1)).
a(n) = (-6-(7-4*sqrt(3))^n*(3+2*sqrt(3))+(-3+2*sqrt(3))*(7+4*sqrt(3))^n)/6. - Colin Barker, Mar 05 2016
a(n) = 14*a(n-1) - a(n-2) + 12. - Vincenzo Librandi, Mar 05 2016