A252021 Primes p such that (p - 1)/tau(p - 1) is also prime.
13, 19, 41, 61, 89, 137, 157, 229, 233, 277, 349, 373, 569, 709, 733, 809, 853, 857, 877, 997, 1049, 1069, 1097, 1193, 1213, 1237, 1433, 1669, 1789, 1913, 2153, 2293, 2389, 2677, 2749, 2777, 2797, 3209, 3229, 3253, 3373, 3449, 3517, 3593, 3733, 3833, 3929, 4073, 4457, 4549, 4597, 4793, 4813, 4909, 4937, 5197, 5273
Offset: 1
Examples
a(1) = 13, since 12/tau(12) = 2. a(2) = 19, since 18/tau(18) = 3. a(4) = 61, since 60/tau(60) = 5.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[p:p in PrimesUpTo(5300)| ((p-1) mod NumberOfDivisors(p-1) eq 0) and IsPrime((p-1) div NumberOfDivisors(p-1)) ]; // Marius A. Burtea, Dec 30 2019
-
Mathematica
Select[Prime[Range[1000]], PrimeQ[(# - 1)/DivisorSigma[0, # - 1]] &]