A252234 Numbers n such that there exists an m so that squarefree kernel of n = squarefree kernel of m, and n is the sum of the proper divisors of m (m may equal n).
6, 28, 36, 50, 240, 312, 384, 450, 496, 810, 1008, 1344, 4256, 4536, 8128, 10800, 11700, 14112, 15288, 19656, 23040, 49686, 90720, 95040, 98280, 98553, 124848, 129024, 153760, 249018, 256932, 260100, 378225, 404586, 454860, 532224, 561834, 700245, 714240
Offset: 1
Keywords
Examples
For n = 36, m = 24, 36 is the sum of the proper divisors of 24, and rad(36) = rad(24) = 6.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..157
- Robert G. Wilson v, Table of n, a(n) and m for n = 1..157
Crossrefs
Programs
-
Mathematica
rad[n_] := Times @@ (First@ # & /@ FactorInteger@ n); f[n_] := Block[{sd = DivisorSigma[1, n] - n}, If[ rad[n] == rad[sd], sd, 0]]; k = 1; lst = {}; While[k < 1000001, a = f@ k; If[a > 0, AppendTo[lst, a]]; k++]; Sort@ lst (* Robert G. Wilson v, Feb 28 2015 *)
Comments