A252493 Numbers n such that n(n+1) is 13-smooth. (Related to the abc conjecture.)
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 21, 24, 25, 26, 27, 32, 35, 39, 44, 48, 49, 54, 55, 63, 64, 65, 77, 80, 90, 98, 99, 104, 120, 125, 143, 168, 175, 195, 224, 242, 324, 350, 351, 363, 384, 440, 539, 624, 675, 728, 1000, 1715, 2079, 2400, 3024, 4095, 4224, 4374, 6655, 9800, 10647, 123200
Offset: 1
Links
Programs
-
Maple
N:= 130000: # to get all entries <= N f:= proc(n) uses padic; evalb(2^ordp(n,2)*3^ordp(n,3)*5^ordp(n,5)*7^ordp(n,7)*11^ordp(n,11)*13^ordp(n,13) = n) end proc: L:= map(f, [$1..N+1]): select(t -> L[t] and L[t+1], [$1..N]); # Robert Israel, Jan 16 2015
-
Mathematica
Select[Range[123456], FactorInteger[ # (# + 1)][[ -1,1]] <= 13 &]
-
PARI
for(n=1,123456, vecmax(factor(n++,13)[,1])<17 && vecmax(factor(n--+(n<2),13))<17 && print1(n",")) \\ Skips the next n if n+1 is not 13-smooth: Twice as fast as the naïve version. Instead of vecmax(.)<17 one could use is_A080197().
Comments