cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A252648 Irregular table of perfect digital invariants for n > 1, i.e., numbers equal to the sum of n-th powers of their digits, read by rows.

Original entry on oeis.org

1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 0, 1, 153, 370, 371, 407, 0, 1, 1634, 8208, 9474, 0, 1, 4150, 4151, 54748, 92727, 93084, 194979, 0, 1, 548834, 0, 1, 1741725, 4210818, 9800817, 9926315, 14459929, 0, 1, 24678050, 24678051, 88593477, 0, 1, 146511208, 472335975, 534494836, 912985153, 0, 1, 4679307774
Offset: 0

Views

Author

Derek Orr, Dec 19 2014

Keywords

Comments

The third column is listed in A003321. - M. F. Hasler, Feb 16 2015
For a number x >= 10^(d-1) with d digits, the sum of n-th powers of these digits cannot exceed d*9^n. Therefore there is only a finite number of possible perfect digital invariants for any n, the largest of which has at most d* digits, where d* = 1+(n*log(9)+log d*)/log(10). - M. F. Hasler, Apr 14 2015

Examples

			The table starts:
1; (n = 0; 1 = 1^0.)
0, 1, 2, 3, 4, 5, 6, 7, 8, 9; (n = 1)
0, 1; (n = 2)
0, 1, 153, 370, 371, 407; (n = 3, A046197)
0, 1, 1634, 8208, 9474; (n = 4, A052455)
0, 1, 4150, 4151, 54748, 92727, 93084, 194979; (n = 5, A052464)
0, 1, 548834; (n = 6)
0, 1, 1741725, 4210818, 9800817, 9926315, 14459929; (n = 7, A124068)
0, 1, 24678050, 24678051, 88593477; (n = 8, A124069)
0, 1, 146511208, 472335975, 534494836, 912985153; (n = 9, A226970)
The third column corresponds to A003321.
The term 153 is member of the row n=3 because 153 = 1^3 + 5^3 + 3^3. - _M. F. Hasler_, Apr 14 2015
		

Crossrefs

Programs

  • PARI
    row(n)={m=1;while(m*9^n>=10^m,m++);for(k=1,10^m,sum(i=1,#d=digits(k),d[i]^n)==k && print1(k,", "))}
    for(n=0,7,print1(row(n),", "))
    
  • Python
    from itertools import combinations_with_replacement
    A252648_list = [1]
    for m in range(1,21):
        l, L, dm, xlist, q = 1, 1, [d**m for d in range(10)], [0], 9**m
        while l*q >= L:
            for c in combinations_with_replacement(range(1,10),l):
                n = sum(dm[d] for d in c)
                if sorted(int(d) for d in str(n)) == [0]*(len(str(n))-len(c))+list(c):
                    xlist.append(n)
            l += 1
            L *= 10
        A252648_list.extend(sorted(xlist)) # Chai Wah Wu, Jan 04 2016

Extensions

I added two links. - Don Knuth, Sep 10 2015