cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A003321 Smallest n-th order perfect digital invariant or PDI: smallest number > 1 equal to sum of n-th powers of its digits, or 0 if no such number exists.

Original entry on oeis.org

2, 0, 153, 1634, 4150, 548834, 1741725, 24678050, 146511208, 4679307774, 32164049650, 0, 564240140138, 28116440335967, 0, 4338281769391370, 233411150132317, 0, 1517841543307505039, 63105425988599693916
Offset: 1

Views

Author

Keywords

Comments

Except for the initial term, this is the third column of A252648. - M. F. Hasler, Feb 16 2015
a(n) = 0 if n>1 and in A262094. - Dmitry Kamenetsky, Jun 05 2020

Examples

			1^3 + 5^3 + 3^3 = 153.
1*0^17 + 5*1^17 + 2*2^17 + 4*3^17 + 1*4^17 + 1*5^17 + 1*7^17 = 233411150132317.
		

References

  • M. Gardner, The Magic Numbers of Dr Matrix. Prometheus, Buffalo, NY, 1985, p. 249.
  • J. S. Madachy, Mathematics on Vacation, Thomas Nelson and Sons Ltd. 1966, p. 164.
  • J. S. Madachy, Madachy's Mathematical Recreations, Dover, p. 164.
  • C. A. Pickover, Keys to Infinity. New York: W. H. Freeman, pp. 169-170, 1995.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

In other bases: A033835 (base 3), A033836 (base 4), A033837 (base 5), A033838 (base 6), A033839 (base 7), A033840 (base 8), A033841 (base 9).

Programs

  • PARI
    a(n)=m=1;while(m*9^n>=10^m,m++);for(k=2,10^m,d=digits(k);s=sum(i=1,#d,d[i]^n);if(s==k,return(k)));0
    n=1;while(n<10,print1(a(n),", ");n++) \\ Derek Orr, Dec 19 2014

Extensions

Additional comments from Lekraj Beedassy, May 23 2001
Extended and cross-references edited by Joseph Myers, Jun 28 2009

A046197 Fixed points for operation of repeatedly replacing a number with the sum of the cubes of its digits.

Original entry on oeis.org

0, 1, 153, 370, 371, 407
Offset: 1

Views

Author

Richard C. Schroeppel

Keywords

Comments

Suppose n has d digits; then the sum of the cubes of its digits is <= 729d and n >= 10^(d-1). So d <= 5. It is now easy to check that the numbers shown are the only solutions. [Corrected by M. F. Hasler, Apr 12 2015]
This is row n=3 of A252648. - M. F. Hasler, Apr 12 2015

Examples

			1^3 + 5^3 + 3^3 = 153. 3^3+7^3 +0^3 = 370.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 153, p. 50, Ellipses, Paris 2008.
  • G. H. Hardy, A Mathematician's Apology, Cambridge, 1967.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 60-62.
  • J. Shallit, Number theory and formal languages, in Emerging applications of number theory (Minneapolis, MN, 1996), 547-570, IMA Vol. Math. Appl., 109, Springer, New York, 1999.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 140.

Crossrefs

Programs

  • Mathematica
    Select[Range[0,407],Total[IntegerDigits[#]^3]==# &] (* Stefano Spezia, Sep 08 2024 *)
  • PARI
    for(n=0,10^5,A055012(n)==n&&print1(n",")) \\ M. F. Hasler, Apr 12 2015

Formula

A055012(a(n))=a(n); A165331(a(n))=0; subset of A031179. - Reinhard Zumkeller, Sep 17 2009

A055013 Sum of 4th powers of digits of n.

Original entry on oeis.org

0, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 1, 2, 17, 82, 257, 626, 1297, 2402, 4097, 6562, 16, 17, 32, 97, 272, 641, 1312, 2417, 4112, 6577, 81, 82, 97, 162, 337, 706, 1377, 2482, 4177, 6642, 256, 257, 272, 337, 512, 881, 1552, 2657, 4352, 6817
Offset: 0

Views

Author

Henry Bottomley, May 31 2000

Keywords

Comments

Fixed points are listed in A052455, row 4 of A252648. See also A061210. - M. F. Hasler, Apr 12 2015

Crossrefs

Programs

  • Magma
    [0] cat [&+[d^4: d in Intseq(n)]: n in [1..50]]; // Bruno Berselli, Feb 01 2013
    
  • Maple
    A055013 := proc(n)
            add(d^4,d=convert(n,base,10)) ;
    end proc:
    seq(A055013(n),n=0..20) ; # R. J. Mathar, Nov 07 2011
  • Mathematica
    Table[Sum[DigitCount[n][[i]] i^4, {i, 9}], {n, 0, 50}] (* Bruno Berselli, Feb 01 2013 *)
    Table[Total[IntegerDigits[n]^4],{n,0,50}] (* Harvey P. Dale, Jul 28 2019 *)
  • PARI
    a(n)=round(normlp(n,4)^4) \\ Quite slow. - M. F. Hasler, Apr 12 2015
    
  • PARI
    A055013(n)=sum(i=1,#n=digits(n),n[i]^4) \\ M. F. Hasler, Apr 12 2015

Formula

a(n) = sum{k>0, (floor(n/10^k)-10*floor(n/10^(k+1)))^4}. - Hieronymus Fischer, Jun 25 2007
a(10n+k) = a(n)+k^4, 0<=k<10. - Hieronymus Fischer, Jun 25 2007

A061209 Numbers which are the cubes of their digit sum.

Original entry on oeis.org

0, 1, 512, 4913, 5832, 17576, 19683
Offset: 1

Views

Author

Amarnath Murthy, Apr 21 2001

Keywords

Comments

It can be shown that 19683 = (1 + 9 + 6 + 8 + 3)^3 = 27^3 is the largest such number.
Numbers of Dudeney. - Philippe Deléham, May 11 2013
If a number n has d digits, 10^(d-1) <= n < 10^d, the cube of the digit sum is at most (d*9)^3 = 729*d^3; if d > 6 this is strictly smaller than 10^(d-1) and cannot be equal to n. See also A061211. - M. F. Hasler, Apr 12 2015

Examples

			4913 = (4 + 9 + 1 + 3)^3.
		

References

  • H. E. Dudeney, 536 Puzzles & Curious Problems, Souvenir Press, London, 1966, p. 36, #120.
  • Amarnath Murthy, The largest and the smallest m-th power whose digit sum is the m-th root. (To be published)
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 36.

Crossrefs

Programs

  • Mathematica
    Select[Range[20000],Total[IntegerDigits[#]]^3==#&] (* Harvey P. Dale, Apr 11 2015 *)
  • PARI
    for(n=0,999999,sumdigits(n)^3==n&&print1(n",")) \\ M. F. Hasler, Apr 12 2015

Formula

a(n) = A007953(a(n))^3. - M. F. Hasler, Apr 12 2015

Extensions

Initial term 0 added by M. F. Hasler, Apr 12 2015

A052455 Fixed points for operation of repeatedly replacing a number with the sum of the fourth power of its digits.

Original entry on oeis.org

0, 1, 1634, 8208, 9474
Offset: 1

Views

Author

Henry Bottomley, Mar 15 2000

Keywords

Comments

This is row n=4 in A252648. - M. F. Hasler, Apr 12 2015

Examples

			a(2)=1634 since 1^4+6^4+3^4+4^4=1+1296+81+256=1634
		

Crossrefs

Programs

Formula

a(n) = A055013(a(n)). - M. F. Hasler, Apr 12 2015

A061210 Numbers which are the fourth powers of their digit sum.

Original entry on oeis.org

0, 1, 2401, 234256, 390625, 614656, 1679616
Offset: 1

Views

Author

Amarnath Murthy, Apr 21 2001

Keywords

Comments

It can be shown that 1679616 = 36^4 is the largest such number.

Examples

			614656 = ( 6+1+4+6+5+6)^4 =28^4.
		

References

  • Amarnath Murthy, The largest and the smallest m-th power whose digit sum is the m-th root. (To be published)
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 36.

Crossrefs

Cf. A061209 (with cubes), A061211.
Cf. A046000, A076090, A046017; A252648 and references there.

Programs

  • Mathematica
    Select[Range[0,17*10^5],#==Total[IntegerDigits[#]]^4&] (* Harvey P. Dale, Sep 22 2019 *)
  • PARI
    isok(n) = n == sumdigits(n)^4; \\ Michel Marcus, Jan 22 2015

Extensions

Corrected by Ulrich Schimke, Feb 11 2002
Initial 0 added by M. F. Hasler, Apr 12 2015

A055015 Sum of 6th powers of digits of n.

Original entry on oeis.org

0, 1, 64, 729, 4096, 15625, 46656, 117649, 262144, 531441, 1, 2, 65, 730, 4097, 15626, 46657, 117650, 262145, 531442, 64, 65, 128, 793, 4160, 15689, 46720, 117713, 262208, 531505, 729, 730, 793, 1458, 4825, 16354, 47385, 118378, 262873
Offset: 0

Views

Author

Henry Bottomley, May 31 2000

Keywords

Comments

The only fixed points (n = 0, 1 and 548834) are listed in row 6 of A252648. - M. F. Hasler, Apr 12 2015

Crossrefs

Programs

  • Magma
    [0] cat [&+[d^6: d in Intseq(n)]: n in [1..40]]; // Bruno Berselli, Feb 01 2013
    
  • Maple
    for n from 0 to 3 do seq(n^6+j^6, j=0..9 ); od; # Zerinvary Lajos, Nov 06 2006
  • Mathematica
    Table[Sum[DigitCount[n][[i]] i^6, {i, 9}], {n, 0, 40}] (* Bruno Berselli, Feb 01 2013 *)
  • PARI
    A055015(n)=sum(i=1,#n=digits(n),n[i]^6) \\ M. F. Hasler, Apr 12 2015

Formula

a(n) = Sum_{k>0} (floor(n/10^k) - 10*floor(n/10^(k+1)))^6. - Hieronymus Fischer, Jun 25 2007
a(10n+k) = a(n) + k^6, 0 <= k < 10. - Hieronymus Fischer, Jun 25 2007

A124069 Fixed points for operation of repeatedly replacing a number with the sum of the eighth power of its digits.

Original entry on oeis.org

0, 1, 24678050, 24678051, 88593477
Offset: 1

Views

Author

Sébastien Dumortier, Nov 05 2006

Keywords

Comments

This is row n=8 of A252648. For a d-digit number n >= 10^(d-1), the sum of 8th powers of its digits is <= 9^8*d, therefore n <= 413979400. - M. F. Hasler, Apr 12 2015

Examples

			24678050 = 2^8 + 4^8 + 6^8 + 7^8 + 8^8 + 0^8 + 5^8 + 0^8.
		

Crossrefs

Programs

  • PARI
    isok(n) = my(d = digits(n)); sum(k=1, #d, d[k]^8) == n; \\ Michel Marcus, Feb 21 2015
    
  • PARI
    for(n=0,413979400,A210840(n)==n&&print1(n",")) \\ M. F. Hasler, Apr 12 2015

Formula

a(n) = A210840(a(n)). - M. F. Hasler, Apr 12 2015

A023106 a(n) is a power of the sum of its digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 81, 512, 2401, 4913, 5832, 17576, 19683, 234256, 390625, 614656, 1679616, 17210368, 34012224, 52521875, 60466176, 205962976, 612220032, 8303765625, 10460353203, 24794911296, 27512614111, 52523350144, 68719476736
Offset: 0

Views

Author

Keywords

Comments

Base-10 Reacher numbers: named for the character Jack Reacher in the series of books by Lee Child. Reacher likes the number 81 because it is the square of the sum of its base-10 digits. - Jeffrey Shallit, Apr 03 2015
Contains A061209 and A061210 and all terms of A061211. See A252648 for numbers which are the sum of some power of their digits. - M. F. Hasler, Apr 13 2015

Examples

			2401 is an element because 2401 = 7^4 is a power of its digit sum 7.
		

References

  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 36.

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{b = Plus @@ IntegerDigits[n]}, If[b > 1, IntegerQ[ Log[b, n]] ]]; Take[ Select[ Union[ Flatten[ Table[n^m, {n, 55}, {m, 9}]]], fQ[ # ] &], 31] (* Robert G. Wilson v, Jan 28 2005 *)
    Join[{0,1},Select[Range[0,1700000],IntegerQ[Log[Total[IntegerDigits[#]],#]]&]//Quiet] (* The program generates the first 21 terms of the sequence. *) (* Harvey P. Dale, Mar 30 2024 *)
  • PARI
    is(n)={n<10||(!(n%s=sumdigits(n))&&s>1&&n==s^round(log(n)/log(s)))} \\ M. F. Hasler, Apr 13 2015
    
  • Python
    import math
    def is_valid(n): dsum = sum(map(int, str(n))); return dsum ** int(round(math.log(n, dsum))) == n if dsum > 1 else n < 2
    # Victor Dumbrava, May 02 2018

A226970 Fixed points for the operation of repeatedly replacing a number with the sum of the ninth powers of its digits.

Original entry on oeis.org

0, 1, 146511208, 472335975, 534494836, 912985153
Offset: 1

Views

Author

Michel Lagneau, Jun 24 2013

Keywords

Comments

The only six integers equal to the sum of the ninth powers of their digits.
This is row n=9 of A252648. For a d-digit number n >= 10^(d-1), the sum of 9th powers of its digits is <= 9^9*d, therefore n <= 4112105981. - M. F. Hasler, Apr 12 2015

Examples

			a(3) = A003321(9);
a(4) = 472335975 = 4^9 + 7^9 + 2^9 + 3^9 + 3^9 + 5^9 + 9^9 + 7^9 + 5^9.
		

Crossrefs

Programs

Showing 1-10 of 13 results. Next