A343292 Number of distinct results produced when generating a graphical image of each row of the multiplication table modulo n.
1, 2, 3, 4, 4, 6, 5, 8, 7, 9, 7, 12, 8, 12, 13, 14, 10, 16, 11, 18, 17, 18, 13, 24, 16, 21, 19, 24, 16, 28, 17, 26, 25, 27, 25, 32, 20, 30, 29, 36, 22, 38, 23, 36, 35, 36, 25, 44, 29, 41, 37, 42, 28, 46, 37, 48, 41, 45, 31, 56, 32, 48, 47, 50, 43, 58, 35, 54, 49, 60
Offset: 1
Keywords
Examples
Modulo 11, the 2 and 6 time tables, the 3 and 4 time tables, the 5 and 9 time tables, and the 7 and 8 time tables give the same pattern. So there are only 7 different time tables (0,1,2,3,5,7 and 10).
Links
- Michael De Vlieger, Scatterplot of (n, a(n)) for n=1..2^16.
- Michael De Vlieger, Annotated scatterplot of (n, a(n)) for n=1..240, labeling a(n), with color function related to ratio (a(n)+(n+3)/2)/((n-3)/2), black for prime n. Red dashed line has slope 1. Blue dashed line = (a(n)+3)/2.
- Michael De Vlieger, Annotated scatterplot of (n, (a(n)+(n+3)/2)/((n-3)/2)) for n=1..2^12, the highest values are labeled a(n).
- Steve Phelps, Modular Times Table, GeoGebra.
Programs
-
Mathematica
{1}~Join~Array[# - (EulerPhi[#] - Sum[Boole[Mod[k^2, #] == 1], {k, #}])/2 &, 69, 2] (* Michael De Vlieger, Apr 13 2021 *)
-
PARI
G(n,r)={Set(vector(n, i, my(j=i*r%n); [min(i,j), max(i,j)]))} a(n)={#Set(vector(n, k, concat(G(n,k-1))))} \\ Andrew Howroyd, Apr 12 2021
-
PARI
\\ here b(n) is A060594(n). b(n)={my(o=valuation(n, 2)); 2^(omega(n>>o)+max(min(o-1, 2), 0))} a(n)={n - (eulerphi(n)-b(n))/2} \\ Andrew Howroyd, Apr 12 2021
Formula
a(p) = (p + 3)/2 for p prime. - Michael De Vlieger, Apr 13 2021
Comments