cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A252696 Number of strings of length n over a 3-letter alphabet that do not begin with a nontrivial palindrome.

Original entry on oeis.org

0, 3, 6, 12, 30, 78, 222, 636, 1878, 5556, 16590, 49548, 148422, 444630, 1333254, 3997884, 11991774, 35969766, 107903742, 323694636, 971067318, 2913152406, 8739407670, 26218074588, 78654075342, 235961781396, 707884899558, 2123653365420, 6370958763006
Offset: 0

Views

Author

Peter Kagey, Dec 20 2014

Keywords

Comments

A nontrivial palindrome is of length at least 2.
3 divides a(n) for all n.
lim n -> infinity a(n)/3^n ~ 0.278489919882115 is the probability that a random, infinite string over a 3-letter alphabet does not begin with a palindrome.
This sequence gives the number of walks on K_3 with loops that do not begin with a palindromic sequence.

Examples

			For n = 3, the first 10 of the a(3) = 12 solutions are (in lexicographic order) 011, 012, 021, 022, 100, 102, 120, 122, 200, 201.
		

Crossrefs

A248122 gives the number of strings of length n over a 3 letter alphabet that DO begin with a palindrome.
Analogous sequences for k-letter alphabets: A252697 (k=4), A252698 (k=5), A252699 (k=6), A252700 (k=7), A252701 (k=8), A252702 (k=9), A252703 (k=10).

Programs

  • Mathematica
    b[0] = 0; b[1] = 0; b[n_] := b[n] = 3*b[n-1] + 3^Ceiling[n/2] - b[Ceiling[n/2]]; a[n_] := 3^n - b[n]; a[0] = 0; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Jan 19 2015 *)
  • Ruby
    seq = [1, 0]; (2..N).each { |i| seq << 3 * seq[i-1] + 3**((i+1)/2) - seq[(i+1)/2] }; seq = seq.each_with_index.collect { |a, i| 3**i - a }

Formula

a(n) = 3^n - A248122(n) for n > 0.
a(2n) = k*a(2n-1) - a(n) for n >= 1; a(2n+1) = k*a(2n) - a(n+1) for n >= 1. - Jeffrey Shallit, Jun 09 2019