cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A144304 Square array A(n,m), n>=0, m>=0, read by antidiagonals: A(n,m) = n-th number of the m-th iteration of the hyperbinomial transform on sequence A001858.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 7, 7, 1, 4, 14, 38, 38, 1, 5, 23, 93, 291, 291, 1, 6, 34, 178, 822, 2932, 2932, 1, 7, 47, 299, 1763, 9193, 36961, 36961, 1, 8, 62, 462, 3270, 21504, 125292, 561948, 561948, 1, 9, 79, 673, 5523, 43135, 313585, 2022555, 10026505, 10026505, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 17 2008

Keywords

Examples

			Square array begins:
   1,   1,   1,    1,    1, ...
   1,   2,   3,    4,    5, ...
   2,   7,  14,   23,   34, ...
   7,  38,  93,  178,  299, ...
  38, 291, 822, 1763, 3270, ...
		

Crossrefs

Columns m=0-3 give: A001858, A001858(n+1), A089462, A089465.
Rows n=0-2 give: A000012, A000027, A008865(m+2).
Main diagonal gives A252727.

Programs

  • Maple
    hymtr:= proc(p) proc(n,m) `if`(m=0, p(n), m*add(p(k) *binomial(n, k) *(n-k+m)^(n-k-1), k=0..n)) end end: f:= proc(n) option remember; add(add(binomial(m, j) *binomial(n-1, n-m-j) *n^(n-m-j) *(m+j)!/ (-2)^j/ m!, j=0..m), m=0..n) end: A:= hymtr(f): seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    hymtr[p_] := Function[{n, m}, If[m == 0, p[n], m*Sum[p[k]*Binomial[n, k]*(n-k+m)^(n-k-1), {k, 0, n}]]]; f[0] = 1; f[n_] := f[n] = Sum[Sum[Binomial[m, j]*Binomial[n-1, n-m-j]*n^(n-m-j)*(m+j)!/(-2)^j/m!, {j, 0, m}], {m, 0, n}]; A[0, ] = 1; A[1, k] := k+1; A[n_, m_] := hymtr[f][n, m]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)
Showing 1-1 of 1 results.