A252730 a(n) = P_n(n) with P_0(z) = z+1 and P_n(z) = z + P_{n-1}(z)*(P_{n-1}(z)-z) for n>1.
1, 3, 17, 871, 4870849, 483209576974811, 36956045653220845240164417232897, 8498748758632331927648392184620600167779995785955324343380396911247
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
Crossrefs
Main diagonal of A177888.
Programs
-
Maple
p:= proc(n) option remember; z-> z+ `if`(n=0, 1, p(n-1)(z)*(p(n-1)(z)-z)) end: a:= n-> p(n)(n): seq(a(n), n=0..8);
-
Mathematica
p[n_] := p[n] = Function[z, z + If[n == 0, 1, p[n-1][z]*(p[n-1][z] - z)]]; a[n_] := p[n][n]; Table[a[n], {n, 0, 8}] (* Jean-François Alcover, Jun 12 2018, from Maple *)