cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A252761 Total sum of n-th powers of parts in all partitions of n.

Original entry on oeis.org

0, 1, 6, 39, 392, 4775, 73920, 1323441, 27530298, 644749920, 16877063274, 486936848068, 15373069624220, 526779275391863, 19477946814752586, 772859962684631760, 32758854443379036238, 1477205045259973740909, 70613293111837146235770, 3566735926987461858837256
Offset: 0

Views

Author

Alois P. Heinz, Dec 21 2014

Keywords

Crossrefs

Main diagonal of A213191.
Cf. A066633.

Programs

  • Maple
    b:= proc(n, p, k) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
          add((l->`if`(m=0, l, l+[0, l[1]*p^k*m]))
              (b(n-p*m, p-1, k)), m=0..n/p)))
        end:
    a:= n-> b(n$3)[2]:
    seq(a(n), n=0..20);
  • Mathematica
    b[n_, p_, k_] := b[n, p, k] = If[n == 0, {1, 0}, If[p < 1, {0, 0}, Sum[ Function[l, If[m == 0, l, l + {0, l[[1]]*p^k*m}]][b[n - p*m, p - 1, k]], {m, 0, n/p}]]]; a[n_] := b[n, n, n][[2]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 07 2017, translated from Maple *)

Formula

a(n) = Sum_{j=1..n} A066633(n,j) * j^n.
a(n) ~ c * n^n, where c = 1/QPochhammer(exp(-1)) = 1.98244090741287370368568246556131201568288277843252568635840026086375046496... - Vaclav Kotesovec, May 28 2018, updated Jul 21 2018