A252866 Number T(n,k) of parts p in all partitions of n with largest integer power k (such that A052409(p)=k); triangle T(n,k), n>=1, 0<=k<=A000523(n), read by rows.
1, 2, 1, 4, 2, 7, 4, 1, 12, 7, 1, 19, 14, 2, 30, 21, 3, 45, 34, 6, 1, 67, 51, 9, 1, 97, 79, 14, 2, 139, 113, 20, 3, 195, 168, 31, 5, 272, 234, 43, 7, 373, 334, 62, 11, 508, 460, 85, 15, 684, 635, 120, 23, 1, 915, 857, 161, 31, 1, 1212, 1165, 221, 44, 2, 1597
Offset: 1
Examples
Triangle T(n,k) begins: 01: 1; 02: 2, 1; 03: 4, 2; 04: 7, 4, 1; 05: 12, 7, 1; 06: 19, 14, 2; 07: 30, 21, 3; 08: 45, 34, 6, 1; 09: 67, 51, 9, 1; 10: 97, 79, 14, 2; 11: 139, 113, 20, 3; 12: 195, 168, 31, 5; 13: 272, 234, 43, 7; 14: 373, 334, 62, 11; 15: 508, 460, 85, 15; 16: 684, 635, 120, 23, 1;
Links
- Alois P. Heinz, Rows n = 1..2048, flattened
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0, add((p-> p+[0, p[1]*j*x^igcd(seq(h[2], h=ifactors(i)[2]))] )(b(n-i*j, i-1)), j=0..n/i))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)[2]): seq(T(n), n=1..25);
Formula
T(2^k,k) = 1.